Landscape-Specific Correlation between Atmospheric Depositions and their Concentrations in Mosses 2005 across Europe?

W. Schröder1, R. Pesch1, A. Hertel1, S. Schönrock1, H. Harmens2, H. Fagerli3, I. Ilyin4

1Chair of Landscape Ecology, University of Vechta \textbullet2 Centre for Ecology & Hydrology, Environment Centre Wales \textbullet3 EMEP MSC-West; 4EMEP MSC-East
Results: **Correlations Cd & Pb (Moss) – Cd & Pb (Dep) within Countries**
Background and Aim

Correlations of HM and N concentrations in mosses and atmospheric depositions proved for

• **Europe** (Schröder et al. 2008, 2010)

 Used for mapping depositions 5 km by 5 km (Schröder et al. 2011, 2012)

• **European countries** (Harmens et al. 2012)

Landscape-specific correlations of HM and N in atmospheric **depositions** and **mosses** 2005?
Data: Ecological Land Classification Europe (ELCE)

Sources:
Vegetation: BfN 2003
Digital elevation model: NOAA/NGDC 1999
Soil texture: FAO/UNESCO 1996
Climate: CRU 2002
Country borders: ESRI 2003
Data: 26 Potential Predictors (Local, Regional)

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Resolution</th>
<th>Data source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moss species</td>
<td>site-specific</td>
<td></td>
</tr>
<tr>
<td>Altitude</td>
<td>site-specific</td>
<td></td>
</tr>
<tr>
<td>Digestion method</td>
<td>site-specific</td>
<td></td>
</tr>
<tr>
<td>Analytical method</td>
<td>country-specific</td>
<td></td>
</tr>
<tr>
<td>Sea distance</td>
<td>site-specific</td>
<td></td>
</tr>
<tr>
<td>Precipitation (1961-1990)</td>
<td>12.5 km x 12.5 km</td>
<td>CRU(^1)</td>
</tr>
<tr>
<td>Population density</td>
<td>100 m x 100 m</td>
<td>EEA(^2)</td>
</tr>
<tr>
<td>Agricultural land uses (1, 5, 10, 25 km radius)</td>
<td>1 km x 1 km</td>
<td>EEA(^2)</td>
</tr>
<tr>
<td>Forest areas (1, 5, 10, 25 km radius)</td>
<td>1 km x 1 km</td>
<td>EEA(^2)</td>
</tr>
<tr>
<td>Urban areas (1, 5, 10, 25, 50 km radius)</td>
<td>1 km x 1 km</td>
<td>EEA(^2)</td>
</tr>
<tr>
<td>Urban areas (75, 100 km radius)</td>
<td>2 km x 2 km</td>
<td>EEA(^2)</td>
</tr>
<tr>
<td>Anthropogenic emissions (Cd, Pb, N)</td>
<td>50 km x 50 km</td>
<td>MSC-WEST(^3)/East(^4)</td>
</tr>
<tr>
<td>Natural emissions (Cd, Hg, Pb, N)</td>
<td>50 km x 50 km</td>
<td>MSC-WEST(^3)/East(^4)</td>
</tr>
<tr>
<td>Total emissions (natural + anthropogenic; Cd, Pb, N)</td>
<td>50 km x 50 km</td>
<td>MSC-WEST(^3)/East(^4)</td>
</tr>
<tr>
<td>Total deposition (Cd, Hg, Pb, N)</td>
<td>50 km x 50 km</td>
<td>MSC-WEST(^3)/East(^4)</td>
</tr>
</tbody>
</table>

\(^1\) Climatic Research Unit, www.cru.uea.ac.uk
\(^3\) Meteorological Synthesizing Centre-West of EMEP, http://met.no
\(^4\) Meteorological Synthesizing Centre-East of EMEP, http://www.msceast.org
Methodology

Dependent variable
Element concentrations

Predictors
Site-specific (Moss species ...)
Regional (Depositions, Land use ...)

Point data
- GIS-Intersection
- Spatial Join to ELCE Units

Raster data
- Spectral data
- Remote Sensing

Spearman Rank Correlation

Classification and Regression Trees

- Waldflächen im 5 km Radius [-]
- Urbane Flächen im 300 m Radius [+]
- Urbane Flächen im 1 km Radius [+]
- Urbane Flächen im 5 km Radius [+]
- Verkehrsflächen im 1 km Radius [+]
- Verkehrsflächen im 5 km Radius [+]
- Agrarfächen im 300 m Radius [+]
- Agrarfächen im 1 km Radius [+]
- Agrarfächen im 5 km Radius [+]
- Niederschlagssumme 09.2006 [-]
- Niederschlagssumme 10.2006 [-]
- Niederschlagssumme 2004 - 2006 [-]
- Niederschlagssumme 2003 - 2006 [-]
- Distanz zum Meer [-]
- Höhe ü. NN [-]
- Neigung [-]
- Bestandeshöhe [-]
- Entfernung zur Baumkrone [+]
- Entfernung zum Strauch [+]
- Entfernung zur Wohnsiedlung [-]
- Entfernung zur Landstraße [-]
- Entfernung zur Autobahn [+]
- Entfernung zur landw. Nutzfläche [-]
- Entfernung zur Industrieanlage [+]
- Hintergrundwerte im Oberboden [-]
- Kontam. durch Kalkpartikel [+]

Note: The diagram includes various data sources and analysis methods used in the methodology, illustrating the integration of point and raster data through GIS techniques and statistical analysis.
Results: Correlations $\text{Cd (Moss)} - \text{Cd (Dep)}$ within ELCE Units

Calculations performed for all ELCE units with $n > 10$
Results: Correlations Pb (Moss) – Pb (Dep) within ELCE Units

Calculations performed for all ELCE units with n > 10
Results: Correlations Hg (Moss) – Hg (Dep) within ELCE Units

Calculations performed for all ELCE units with n > 10

Spearman Correlations Hg

> 0.89
0.7 - 0.89
0.5 - 0.69
0.2 - 0.49
< 0.2
Results: Correlations N (Moss) – N (Dep) within ELCE Units

Calculations performed for all ELCE units with $n > 10$
Results: Decision Tree Analysis for N in Mosses within ELCE Units

F_1.2 - Correlation 0.58*
F_4.2 - Correlation 0.01
* Significant (p < 0.01)
Results: Decision Tree Analysis for ELCE Unit F_1.2

CART analysis for ELCE class F_1.2
N = 236
62 % explained variance
High correlation!
Results: Decision Tree Analysis ELCE Unit F_4.2 (N)

CART analysis for ELCE class F_4.2

N = 396
10% explained variance
Low correlation!
Results: *Enough Sites within ELCE Units?*

Minimum Sample Size (MSS)

\[MSS = \left(\frac{Stdev \times 1.96}{0.2 \times Mean} \right)^2 \]

<table>
<thead>
<tr>
<th>Number of ELCE units with missing sites</th>
<th>Cd</th>
<th>Hg</th>
<th>Pb</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7 / 29</td>
<td>3 / 26</td>
<td>11 / 29</td>
<td>3 / 27</td>
</tr>
<tr>
<td>Area covered by ELCE units with missing sites [km²]</td>
<td>498186.7</td>
<td>105844.8</td>
<td>858911.5</td>
<td>78563.0</td>
</tr>
<tr>
<td></td>
<td>24.1 %</td>
<td>11.5 %</td>
<td>37.9 %</td>
<td>11.1 %</td>
</tr>
<tr>
<td></td>
<td>12.3 %</td>
<td>4.2 %</td>
<td>21.5 %</td>
<td>3.3 %</td>
</tr>
</tbody>
</table>
Conclusions

Landscape-specific correlations between Cd, Hg, Pb, N in mosses and depositions

ELCE units with high and low correlations for Cd, Hg, Pb, N

Spatial correlation patterns differ for Cd, Hg, Pb and N

More detailed multivariate investigations needed

Minimum number of sites not achieved for some ELCE units → Optimizing spatial design of Moss Survey?
Respective strategy tested in Germany (Pesch et al. 2006)
Thank you for your attention!

Schröder W et al. Are cadmium, lead and mercury concentrations in mosses across Europe primarily determined by atmospheric deposition of these metals? *J Soils Sediments* 2010, 10:1572-1584

