Chapter 3 of the Modelling and Mapping Manual of the LRTAP Convention describes the most up-to-date methodology and establishment of critical levels for adverse impacts of air pollutant (ozone, sulphur dioxide, nitrogen oxides and ammonia) on vegetation. The current version of Chapter 3 includes updates to critical levels for ozone agreed at the 30th ICP Vegetation Task Force Meeting, 14-17 February, 2017, Poznan, Poland.

For ozone, further supporting information is provided in this Scientific Background Document A (SBD-A) regarding the methodologies and critical levels described in Chapter 3. In addition, a Scientific Background Document B (SBD-B) is available, containing DOSE model parameterisations for additional species and information on developing areas of ozone research and the application of methodologies to further develop ozone critical levels. Chapter 3 and both scientific background documents are available on the ICP Vegetation website at http://icpvegetation.ceh.ac.uk.

* International Cooperative Programme on Effects of Air Pollution on Natural Vegetation and Crops
Chapter 3 was prepared under the leadership of the ICP Vegetation and led by Gina Mills, Head of the ICP Vegetation Programme Coordination Centre (PCC), Centre for Ecology & Hydrology, Bangor, UK.

A list of recent and past contributors to the content of Chapter 3 and SBD-A is provided below.

<table>
<thead>
<tr>
<th>Name</th>
<th>Country</th>
<th>Name</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gina Mills</td>
<td>UK Lead</td>
<td>Harmens Harmens</td>
<td>UK Editor</td>
</tr>
<tr>
<td>Håkan Pleijel</td>
<td>Sweden</td>
<td>Patrick Büker</td>
<td>UK Chair Forest Trees Working Group</td>
</tr>
<tr>
<td>Ignacio González-Fernández</td>
<td>Spain</td>
<td>Chair (Semi-)natural Vegetation Working Group</td>
<td></td>
</tr>
<tr>
<td>Felicity Hayes</td>
<td>UK (Semi-)natural Vegetation Working Group</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contributors

<table>
<thead>
<tr>
<th>Name</th>
<th>Country</th>
<th>Name</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beat Achermann</td>
<td>Switzerland</td>
<td>Ludger Grünhage</td>
<td>Germany</td>
</tr>
<tr>
<td>Rocio Alonso</td>
<td>Spain</td>
<td>Per Erik Karlsson</td>
<td>Sweden</td>
</tr>
<tr>
<td>Mike Ashmore</td>
<td>UK</td>
<td>Didier Le Thiec</td>
<td>France</td>
</tr>
<tr>
<td>Seraina Bassin</td>
<td>Switzerland</td>
<td>Ian Leith</td>
<td>UK</td>
</tr>
<tr>
<td>Jürgen Bender</td>
<td>Germany</td>
<td>Sirkku Manninen</td>
<td>Finland</td>
</tr>
<tr>
<td>Elke Bergmann</td>
<td>Germany</td>
<td>Riccardo Marzuoli</td>
<td>Italy</td>
</tr>
<tr>
<td>Victoria Bermejo</td>
<td>Spain</td>
<td>Reto Meier Switzerland</td>
<td>Switzerland</td>
</tr>
<tr>
<td>Oliver Bethenod</td>
<td>France</td>
<td>Simone Mereu</td>
<td>Italy</td>
</tr>
<tr>
<td>Sabine Braun</td>
<td>Switzerland</td>
<td>Elena Oksanen</td>
<td>Finland</td>
</tr>
<tr>
<td>Filippo Bussotti</td>
<td>Italy</td>
<td>Josep Peñuelas</td>
<td>Spain</td>
</tr>
<tr>
<td>Vicent Calatayud</td>
<td>Spain</td>
<td>Gunilla Phil-Karlsson</td>
<td>Sweden</td>
</tr>
<tr>
<td>Esperanza Calvo</td>
<td>Spain</td>
<td>Martina Pollastrini</td>
<td>Italy</td>
</tr>
<tr>
<td>Jean-Françoise Castell</td>
<td>France</td>
<td>Ángela Ribas</td>
<td>Spain</td>
</tr>
<tr>
<td>Helena Danielsson</td>
<td>Sweden</td>
<td>Marcus Schaub</td>
<td>Switzerland</td>
</tr>
<tr>
<td>Susana Elvira</td>
<td>Spain</td>
<td>David Simpson</td>
<td>Sweden</td>
</tr>
<tr>
<td>Lisa Emberson</td>
<td>UK</td>
<td>Juha-Pekka Tuovinen</td>
<td>Finland</td>
</tr>
<tr>
<td>Angelo Finco</td>
<td>Italy</td>
<td>Karine Vandermeiren</td>
<td>Belgium</td>
</tr>
<tr>
<td>Jürg Fuhrer</td>
<td>Switzerland</td>
<td>Matthias Volk</td>
<td>Switzerland</td>
</tr>
<tr>
<td>Lina Fusaro</td>
<td>Italy</td>
<td>Gerhard Wieser</td>
<td>Austria</td>
</tr>
<tr>
<td>Giacomo Gerosa</td>
<td>Italy</td>
<td>Matthew Wilkinson</td>
<td>UK</td>
</tr>
<tr>
<td>Ben Gimeno</td>
<td>Spain</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table of Contents

1. **Introduction** ... 4

2. **Method for setting a reference value (Ref10 POD\(_y\)) for determining flux-based critical levels (Section III.3.1.3 of the manual)** ... 5

 2.1 Introduction of the methodology .. 5

 2.2 Evaluation of 'pre-industrial' O\(_3\) ... 5

 2.3 Estimated range of O\(_3\) concentrations early 1900s ... 7

 2.4 Examples of Ref POD\(_y\) calculations for different receptors and using constant O\(_3\) concentrations in the range of 10 – 25 ppb ... 8

 2.5 References .. 9

3. **Modelling the O\(_3\) concentration at the top of the canopy (Section III.3.4.2 of the manual)** .. 11

 3.1 Introduction ... 11

 3.2 Conversion of O\(_3\) concentration at measurement height to canopy height 11

 3.3 References ... 19

 3.4 Appendix ... 20

4. **Crops – Additional information on O\(_3\) flux model parameterisation (Section III.3.5.2 of the manual)** .. 24

 4.1 Wheat and potato ... 24

 4.2 Tomato .. 29

 4.3 References ... 32

5. **Forest trees – Additional information on O\(_3\) flux model parameterisation (Section III.3.5.3 of the manual)** ... 34

 5.1 Additional information on parameterisation of forest tree species and sources of information ... 34

 5.2 Estimating the start (A\(_{\text{start_FD}}\)) and end (A\(_{\text{end_FD}}\)) of the growing season using the latitude model ... 38

 5.3 References ... 38

6. **(Semi-)natural vegetation – Flux model parameterisation for selected (semi-)natural vegetation species and associated flux-effect relationships (Section III.3.5.4 of the manual)** ... 42

7. **AOT40-based critical levels and response functions for O\(_3\) (Section III.3.7 of the manual)** ... 43

 7.1 Introduction ... 43

 7.2 Crops ... 43

 7.3 Forest trees ... 47

 7.4 (Semi-)natural vegetation ... 50

 7.5 References ... 53
1 Introduction

This Scientific Background Document A (SBD-A) contains supplementary information for Chapter 3 (‘Mapping critical levels for vegetation’) of the Modelling and Mapping Manual of the Convention on Long-range Transboundary Air Pollution (LRTAP), specifically for ozone (O₃) critical levels for vegetation. Chapter 3 of the manual was prepared under the leadership of the ICP Vegetation and was fully revised to include updates to critical levels for O₃ agreed at the 30th ICP Vegetation Task Force Meeting, 14-17 February, 2017, Poznan, Poland. The revised version of Chapter 3 was published in April 2017 on the ICP Vegetation website (http://icpvegetation.ceh.ac.uk). Where relevant, reference is made within brackets to the appropriate sections of Chapter 3.

SBD-A contains further information on (with reference to relevant Section in the manual):

- Method for setting a reference value (Ref10 PODᵥ) for determining flux-based critical levels (Section III.3.1.3);
- Modelling the O₃ concentration at the top of the canopy (Section III.3.4.2);
- Scientific bases of the parameterisation of the O₃ flux models used to establish critical levels for crops (Section III.3.5.2), forest trees (Section III.3.5.3) and (semi-)natural vegetation (Section III.3.5.4);
- Scientific bases of O₃ concentration-based (AOT40) dose-response relationships and critical levels for crops, forests trees and (semi-)natural vegetation (Section III.3.7);
- O₃-sensitivity of plant species.

In the previous version of Chapter 3 of the manual, much of the information related to bullet points two and three was available in the Annexes of Chapter 3.
Method for setting a reference value (Ref10 POD\textsubscript{Y}) for determining flux-based critical levels (Section III.3.1.3 of the manual)

2.1 Introduction of the methodology

At critical levels expert workshop in Deganwy, UK (7 – 9 June, 2016) and at the UNECE Ozone Critical Levels Workshop in Madrid, Spain (7 – 8 November, 2016) concern was raised that in some circumstances when the stomatal O\textsubscript{3} flux approach is being used and the Phytotoxic Ozone Dose above a flux-threshold of Y (POD\textsubscript{Y}) is being calculated, reference against a POD\textsubscript{Y} of 0 could theoretically lead to an O\textsubscript{3} critical level that is not achievable as the O\textsubscript{3} concentrations needed to achieve this could be lower than ‘pre-industrial’ O\textsubscript{3}. This is especially the case when Y is low. Hence, the calculation of a reference POD\textsubscript{Y} (Ref POD\textsubscript{Y}) was explored in setting critical levels for vegetation. At the workshop in Madrid it was decided that the reference POD\textsubscript{Y} should be calculated at constant 10 ppb O\textsubscript{3} (Ref10 POD\textsubscript{Y}), representing clean air, by:

- Calculating the Ref POD\textsubscript{Y} by using a constant O\textsubscript{3} concentration of 10 ppb and the climatic conditions in the experiment;
- Where data is combined from different climates, take the mean of this POD\textsubscript{Y} as the reference POD\textsubscript{Y} from which you calculate the critical level.

The application of this approach is shown in Figure 2.1.

![Figure 2.1](image)

Figure 2.1
Method for using Ref10 POD\textsubscript{Y} (i.e. POD\textsubscript{Y} at 10 ppb constant O\textsubscript{3}) as reference point for O\textsubscript{3} critical level derivation.

In this paper we provide further details on justification for the introduction of the above methodology, using a constant O\textsubscript{3} concentration of 10 ppb, representing clear air and potentially ‘pre-industrial’ O\textsubscript{3} concentrations.

2.2 Evaluation of ‘pre-industrial’ O\textsubscript{3}

The only quantitative measurements of O\textsubscript{3} during the 19th century were made in Park Montsouris on the outskirts of Paris. Volz and Kley (1988) conducted a reanalysis of the Montsouris data and found that the early technique produced results similar to a modern ultraviolet absorption instrument. They concluded that average O\textsubscript{3} at Montsouris during 1876–1910 was 11 ppbv with an uncertainty of ±2 ppbv. However, there is no way to know if these values were representative of other surface locations in the Northern Hemisphere. Measurements conducted in the latter half of the 19th century at various locations across the world using the Schönbein paper methodology are deemed to be very uncertain with
respect to absolute O₃ values (Cooper et al., 2014). Despite the uncertainty in absolute values, these measurements showed that 1) 19th century seasonal O₃ most often peaked in spring, followed by winter; seasonal O₃ minima most frequently occurred in summer and autumn, and 2) studies that compared late 19th century estimated O₃ to late 20th century ultraviolet absorption O₃ measurements generally concluded that average O₃ increased by about a factor of two (Cooper et al., 2014) or more (Anfossi et al., 1991; Volz and Kley, 1988) during the 20th century.

Despite the uncertainty of the Schönbein method, there is one set of late 19th century Schönbein measurements that is difficult to dismiss. Measurements made between 1874 and 1909 at Pic du Midi, France, 3000 m above sea level, used the same type of paper and techniques as those employed at Montsouris (Marenco et al., 1994). Accounting for differences in pressure and humidity between Pic du Midi and Montsouris, Marenco et al. (1994) used the Montsouris regression to estimate that Pic du Midi O₃ concentrations were approximately 10 ppbv during 1874–1895, with a springtime peak and wintertime minimum. From 1895 until the end of the record in 1909 O₃ increased steadily to 14 ppbv, while O₃ at Montsouris at this time decreased. Marenco et al. (1994) point out that the increase in O₃ at Pic du Midi coincided with global increases in methane concentrations, while the O₃ decrease at Montsouris may have been the result of increased emission of NO in Paris that reduced O₃ concentrations by titration at nearby Montsouris. While the Pic du Midi O₃ mixing ratios appear to be more reliable than any other record outside of Montsouris, the results raise the question why O₃ at 3 km above sea level at Pic du Midi, a site representing the free troposphere most of the time, was no greater than O₃ at the low elevation site of Montsouris. This lack of a vertical O₃ gradient in the lower troposphere is in direct contrast with O₃ sondes observations from around the world that showed a consistent increase in O₃ with altitude during the 1980s and 1990s (Logan, 1999). The latest generation of atmospheric chemistry models taking part in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) show a vertical O₃ gradient in the northern mid-latitude lower troposphere during the 1850s that is weaker than the period 1996–2005, but the models overestimate 1850s lower tropospheric O₃ by a factor of two compared to Pic du Midi and Montsouris (Stevenson et al., 2013). ACCMIP estimated surface O₃ in the northern hemisphere mid-latitudes in 1850 to be more than 40% lower than in 2000, with absolute decreases more than 25 ppbv for the Mediterranean, much of Asia, and the western USA due to less precursor emissions (Young et al., 2013).

Figure 2.2 O₃ evolution in the free atmosphere over Western Europe, from measurement at the Pic du Midi and various European stations at high altitudes. Source: Marenco et al. (1994).
Marenco et al. (1994) showed an exponential increase in O₃ across Western Europe using measurements from several locations, beginning with the Pic du Midi Schönbein measurements in the 1870s followed by short-term quantitative measurements at several high altitude sites in Switzerland, Germany, and France from the 1930s through the early 1990s (Figure 2.2). They concluded that O₃ increased by a factor of 5 between the late 1800s and the early 1990s and by a factor of 2 between the 1950s and early 1990s. This increase corresponds to the global increase in fossil fuel combustion summarized by the IPCC Fifth Assessment Report (IPCC, 2013).

2.3 Estimated range of O₃ concentrations early 1900s

Table 2.1 provides an estimate of surface O₃ concentrations in the Northern Hemisphere based on the concentrations in 2000 for sites at different elevations (Cooper et al., 2014) and assuming a rise in surface O₃ concentration of a factor 2 (Cooper et al., 2014), 3 (Marenco et al., 1994) or 5 (Marenco et al., 1994). Equally, the rise in surface O₃ concentration by a factor 2 could also reflect the ground-level O₃ concentration in the 1950s as O₃ concentrations might have doubled since then (Cooper et al., 2014; Marenco et al., 1994). The average surface O₃ concentration at low and high elevation sites agrees well with measurements at Montsouris and Pic du Midi (see introduction) when assuming a rise in surface O₃ concentration by a factor 3 between 1900 and 2000. The Royal Society (2008) came to the conclusion that a background O₃ concentration of 10 – 15 ppbv in 1900 had doubled to 20 – 30 ppbv by 1980 and has since then risen by another 5 ppbv till 2007. The world’s longest continuous O₃ record is from the Arkona-Zingst site on the northern German coast. In the late 1950s and early 1960s annual mean O₃ concentrations were between 15 – 20 ppbv, which had doubled by the end of the 20th century (Cooper et al., 2014).

Table 2.1 Estimate range of ground-level O₃ concentration in 1900 at sites in the Northern Hemisphere, based on the O₃ concentration at the sites in 2000 (Cooper et al., 2014), and assuming a linear rise in ground-level O₃ concentration by a factor 2, 3 and 5 between 1900 and 2000.

<table>
<thead>
<tr>
<th>Sites</th>
<th>Rise since 1900</th>
<th>Factor 2 1900</th>
<th>Factor 3 1900</th>
<th>Factor 5 1900</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Year 2000</td>
<td>Elevation (m)</td>
<td>Ozone (ppbv)</td>
<td>Ozone (ppbv)</td>
</tr>
<tr>
<td>Barrow, Alaska</td>
<td>0</td>
<td>27</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>Arkona-Zingst, Germany</td>
<td>0</td>
<td>28</td>
<td>14</td>
<td>9</td>
</tr>
<tr>
<td>Storhofdi, Iceland</td>
<td>100</td>
<td>38</td>
<td>19</td>
<td>13</td>
</tr>
<tr>
<td>Japanese MBL</td>
<td>100</td>
<td>44</td>
<td>22</td>
<td>15</td>
</tr>
<tr>
<td>Mace Head, Ireland</td>
<td>200</td>
<td>39</td>
<td>19</td>
<td>13</td>
</tr>
<tr>
<td>US Pacific MBL</td>
<td>200</td>
<td>32</td>
<td>16</td>
<td>11</td>
</tr>
<tr>
<td>Hohenpeissenberg, Germany</td>
<td>1000</td>
<td>41</td>
<td>21</td>
<td>14</td>
</tr>
<tr>
<td>Arosa, Switzerland</td>
<td>1800</td>
<td>45</td>
<td>22</td>
<td>15</td>
</tr>
<tr>
<td>Lassen NP, California, USA</td>
<td>1800</td>
<td>40</td>
<td>20</td>
<td>13</td>
</tr>
<tr>
<td>Mt Hapoo, Japan</td>
<td>1900</td>
<td>51</td>
<td>25</td>
<td>17</td>
</tr>
<tr>
<td>Zugspitze, Germany</td>
<td>3000</td>
<td>53</td>
<td>27</td>
<td>18</td>
</tr>
<tr>
<td>Summit, Greenland</td>
<td>3200</td>
<td>45</td>
<td>23</td>
<td>15</td>
</tr>
<tr>
<td>Mauna Loa, Hawaii, USA</td>
<td>3400</td>
<td>40</td>
<td>20</td>
<td>13</td>
</tr>
<tr>
<td>Jungfraujoch, Switzerland</td>
<td>3600</td>
<td>54</td>
<td>27</td>
<td>18</td>
</tr>
<tr>
<td>Average</td>
<td>All</td>
<td>41</td>
<td>21</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>≤200 m</td>
<td>35</td>
<td>17</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>≥1000 m</td>
<td>46</td>
<td>23</td>
<td>15</td>
</tr>
</tbody>
</table>
2.4 Examples of Ref PODY calculations for different receptors and using constant \(O_3\) concentrations in the range of 10 – 25 ppb

The DO3SE (Deposition of \(O_3\) for Stomatal Exchange) model (https://www.sei-international.org/do3se) was used to calculate stomatal \(O_3\) fluxes at a constant \(O_3\) concentration of 10, 15, 20 or 25 ppb, applying either the parameterisations as defined in the Modelling and Mapping Manual of the LRTAP Convention (LRTAP Convention, 2017) or local parameterisations where appropriate. Stomatal \(O_3\) fluxes, i.e. Phytotoxic Ozone Doses (PODs), were calculated for different vegetation types, based on experiments conducted in various years under varying climatic conditions. For wheat and potato, data used in the establishment of the flux-effect relationships as defined in the Modelling and Mapping Manual were used. For trees, data described by Büker et al. (2015) were used. In addition, PODY was calculated for different plant species for 2010 using climate data from a gradient of seven sites across Europe, i.e. Östad (SE), Cairngorm, Auchencorth, Harwell (all UK), Giessen (DE), Arconate (IT), Tres Cantos (ES). The resulting \(O_3\) stomatal fluxes are referred to as reference PODY (Ref PODY). The average reference PODY for the different plant species or plant functional types are shown in Figure 2.3 and 2.4.

As to be expected, Ref PODY is lowest for crops (Ref PODY = 0) as the flux threshold \(Y\) is 6 nmol m\(^{-2}\) s\(^{-1}\) and the accumulation period is shorter. Ref PODY is higher when using a generic crop flux model for application in integrated assessment modelling (Crop IAM, based on wheat parameterisation) as \(Y\) for this model is 3 nmol m\(^{-2}\) s\(^{-1}\) and the accumulation period is longer (LRTAP Convention, 2017). Compared with crops, Ref PODY is higher for (semi-)natural vegetation and tree species due to the low \(Y\) value of 1 nmol m\(^{-2}\) s\(^{-1}\) and the longer accumulation period (LRTAP Convention, 2017). Ref PODY increases linearly with reference \(O_3\) concentration \((R^2 >0.97)\). Ref PODY is generally lower for needle leaf trees than deciduous broadleaf trees; remarkable are the high Ref PODY values for poplar, more than a factor two higher than for other deciduous broadleaf tree species, primarily due to its higher maximum stomatal conductance.

Figure 2.3. Reference Phytotoxic Ozone Dose (PODY) calculated at a constant \(O_3\) concentration ranging from 10 to 25 ppbv for crops and (semi-)natural vegetation. \(Y = 6, 6, 3\) and 1 for wheat, potato, generic crop (Cr.IAM) and Trifolium species (T.sub = Trifolium subterraneum; T.rep. = T. repens) respectively. T.rep. values are an average for seven sites in 2010. Bars show mean + one SD.
Reference Phytotoxic Ozone Dose (POD) calculated at a constant \(O_3\) concentration ranging from 10 to 25 ppbv for trees; \(Y = 1\) for all tree species. Bars show mean + one SD. Top: Broadleaved deciduous tree species (B.2010 = Beech for seven sites in 2010; Be/Bi = Beech/Birch; T.oak = temperate oak; H.oak = Holm oak; Bl.dec. = all Broadleaved deciduous trees; values for poplar were divided by two. Bottom: Needleleaf tree species; N.spruce = Norway spruce; N.s.2010 = Norway spruce for seven sites in 2010; A.pine = Aleppo pine; S.pine = Scots pine; N.leaf = all needleleaf trees.

2.5 References

3 Modelling the O₃ concentration at the top of the canopy (Section III.3.4.2 of the manual)

3.1 Introduction

The O₃ concentrations needed for the calculation of the POD and the critical levels are the concentrations which occur just at the upper limit of the laminar boundary layer of the receptors’ leaves. Within exposure systems such as open-top chambers, where air flow is omnidirectional, the exposure concentration measured at the top of the canopy reflects the O₃ concentration at the upper boundary of the leaves. Under unenclosed field conditions, it was decided that the O₃ concentration at the top of the canopy provides a reasonable estimate of the O₃ concentration at the upper surface boundary of the laminar boundary layer near the flag leaf (in the case of wheat) and the sunlit upper canopy leaves (in the case of other receptors). Thus, the O₃ concentration at the top of the canopy should be available for determining each of the indices used.

Unfortunately O₃ concentration is generally not measured at the top of the canopy but well above it in the case of crops, or well below it in the case of forests (DO3SE, 2014). For crops and other low vegetation, canopy-top O₃ concentrations may be significantly lower than those at conventional measurement heights of 2-5m above the ground (Figure 3.1a), and hence use of measured data, directly or after spatial interpolation, may lead to significant overestimates of O₃ concentrations and hence of the degree of exceedance of critical levels. In contrast, for forests, measured data at 2-5m above the ground may underestimate O₃ concentration at the top of the canopy (Figure 3.1b). The difference in O₃ concentration between measurement height and canopy height is a function of several factors, including wind speed, atmospheric stability (note how in Figure 3.1 the O₃ concentration profile changes with atmospheric stability) and other meteorological factors, canopy height, surface roughness and the total flux of O₃, F_{tot}.

Conversion of O₃ concentration at measurement height to that at canopy-top height (z_{gt}) can be best achieved with an appropriate deposition model. It should be noted, however, that the flux-gradient relationships these models depend on are not strictly valid within the roughness sublayer (up to 2-3 times canopy height) or in a heterogeneous landscape, so even such detailed calculations can provide only approximate answers. The model chosen will depend upon the amount of meteorological data that is available.

3.2 Conversion of O₃ concentration at measurement height to canopy height

Three methods are included here which can be used to achieve the necessary conversion if (a) no meteorological data are available at all, if (b) all the important meteorological measurements are available, or if (c) some basic measurements are available.

Method a) Tabulated gradients

If no meteorological data are available at all, then a simple tabulation of vertical O₃ gradients can be used. The relationship between O₃ concentrations at a number of different heights has been estimated with the EMEP deposition module (Emberson et al., 2000b), using meteorology from about 30 sites across Europe. Data were produced for an arbitrary crop surface and for short grasslands and forest trees (see Table III.7 in Modelling and Mapping Manual). For the crop surface, the assumptions made here are that we have a 1 m high crop with $g_{max} = 450$ mmol O₃ m⁻² PLA s⁻¹. The total leaf surface area index (LAI) is set to 5 m² PLA m⁻², and the green LAI is set at 3 m² PLA m⁻², assumed to give a canopy-scale phenology factor (f_{phen}) of 0.6. The soil moisture factor (f_{SW}) is set to 1.0. Constant values of these parameters are used throughout the year in order to avoid problems with trying to
estimate growth stage in different areas of Europe. The concentration gradients thus derived are most appropriate to a fully developed crop but will serve as a reasonable approximation for the whole growing season. Other stomatal conductance modifiers are allowed to vary according to the wheat-specific functions.

Figure 3.1 \(O_3\) gradients with different atmospheric stability conditions (neutral, stable, unstable). a) Gradients above crops when \(O_3\) concentration is measured above the canopy top; b) gradients above a forest (target surface) when \(O_3\) concentration is measured above a reference surface with lower vegetation away from the forest edge at an height which is lower than the forest top-canopy height. Thick curves are
the O₃ gradients above the reference surface generated from the measuring point (yellow/red dot); dashed curves are the O₃ gradients above the forest canopy.

For short grasslands, canopy height was set to 0.1 m, g_{max} to 270 mmol O₃ m⁻² PL A s⁻¹ and f_{gwp} set to 1.0. All other factors are as given for grasslands in Emberson et al. (2000b). For the micrometeorology, the displacement height (d) and roughness length (z_0) are set to 0.7 and 0.1 of canopy height (z_1), respectively. Table III.7 in the Modelling and Mapping Manual shows the average relationship between O₃ concentrations at selected heights, derived from runs of the EMEP module over May-July, and selecting the noontime factors as representative of daytime multipliers. O₃ concentrations are normalised by setting the 20m value to 1.0.

To use Table III.7, O₃ concentration measurements made above crops or grasslands may simply be extrapolated downwards to the canopy top for the respective vegetation. For example, with 30 ppb measured at 3 m height (above ground level) in a crop field, the concentration at 1 m would be 30.0 ppb \times (0.88/0.95) = 27.8 ppb. For short grasslands we would obtain 30.0 ppb \times (0.74/0.96) = 23.1 ppb at canopy height 0.1m. Experiments have shown that the vertical gradients found above for crops also apply well to tall (0.5m) grasslands. Some judgement may then be required to choose values appropriate to different vegetation types.

For forests, O₃ concentrations must often be derived from measurements made over grassy areas or other land use types. In principle, the O₃ concentration measured over land-use X (e.g. short grasslands) could be used to estimate the O₃ concentration at a reference height, and then the gradient profile appropriate for desired land use Y could be applied. However, in order to keep this simple methodology manageable, and in view of the uncertainties inherent in making use of any profile near the canopy itself, it is suggested that concentrations are estimated by extrapolating the profiles given in Table III.7 upwards to the canopy height for forests. As an example, if we measure 30 ppb at 3m above short grassland, the concentration at 20 m is estimated to be 30.0 ppb \times (1.0/0.96) = 31.3 ppb.

It should be noted that the profiles shown in Table III.7 are representative only, and that site-specific calculations would provide somewhat different numbers. However, without local meteorology and the use of a deposition model, the suggested procedure should give an acceptable level of accuracy for most purposes. Gerosa et al. (pers. comm.) verified that the tabulated gradients allowed them to calculate O₃ deposition fluxes for a mature forest that were in very good agreement with those directly measured with the eddy covariance technique.

Method b) Concentration profiles with stability effects

If all the important meteorological measurements are available, two possible cases can be envisaged: (1) if all the measurements were done above the desired (target) vegetation canopy or (2) if the measurements were done above a vegetated surface which is different from the desired surface.

Case 1: O₃ and meteorological measurements available above the target canopy

If the wind speed and the O₃ concentration were measured above the vegetation canopy, respectively at height $Z_{m,w}$ and height Z_{m,O_3}, the O₃ concentration at the top of the canopy (the target height Z_{tgt}) can be obtained by making use of the big-leaf approximation and of the constant-flux assumption in the definition of the aerodynamic resistance. In the following, the roughness sub-layer affecting the concentration profiles near the canopy top has been neglected. A simple method for correcting for the roughness sub-layer can be found in Tuovinen and Simpson (2008). With the geometry illustrated in Figure 3.2, the O₃ concentration at the top of the canopy $O_3(Z_{tgt})$ can be calculated with the following equation:
where $O_3(z_m, O_3)$ is the available O_3 measurement above the canopy, $R_a(z_{tgt}, z_m, O_3)$ is the aerodynamic resistance between the height where O_3 was measured and the top canopy height (the target height), $R_a(d + z_0, z_m, O_3)$ is the aerodynamic resistance to O_3 deposition, i.e. the atmospheric resistance between the height where O_3 was measured and the height of the upper boundary of the laminar sub-layer of the theoretical big-leaf surface, R_b is the resistance to O_3 diffusion in the laminar sub-layer, and R_{surf} is the overall resistance to O_3 deposition to the underlying surfaces. The latter includes the stomatal resistance to O_3 uptake R_{stom}, the resistance of the external cuticles R_{ext}, the soil resistance to O_3 deposition R_{soil} and the air resistance to O_3 transfer within the vegetation layer R_{inc}.

The calculation of the aerodynamic resistance R_a requires the estimation of the friction velocity u^* above the vegetated surface by the following equation

\begin{equation}
 u^* = \frac{k \cdot u(z_{m,w})}{\ln \left(\frac{z_{m,w} - d}{z_0} \right) - \psi_M \left(\frac{z_{m,w} - d}{L} \right) + \psi_M \left(\frac{z_0}{L} \right)}
\end{equation}

where k is the von Kármán constant (0.41), $u(z_{m,w})$ is the wind speed measured at the height $z_{m,w}$, d is the displacement height usually assumed as 2/3 of the canopy height, z_0 is
the roughness length usually assumed as 1/10 of the canopy height, and \(\psi_M(\zeta) \) is the integral form of the similarity function for momentum which takes into account the stability of the atmospheric surface layer in terms of the Obukhov length \(L \) (1/L = 0 if the atmosphere is neutral, 1/L < 0 if the atmosphere is unstable, 1/L > 0 if the atmosphere is stable) (Garratt, 1992).

With \(\zeta \) (adimensional length) as the argument, the function \(\psi_M(\zeta) \) is defined as (Dyer, 1974; Garratt, 1992):

\[
\psi_M(\zeta) = \begin{cases}
\ln \left[\frac{1 + x^2}{2} \cdot \left(1 + \frac{x}{2} \right)^2 \right] - 2 \arctan(x) + \frac{\pi}{2}, & \text{when } \zeta < 0 \\
-5\zeta, & \text{when } \zeta \geq 0
\end{cases}
\]

with \(x = (1 - 16 \cdot \zeta)^{1/4} \).

Once \(u^* \) is known, the two \(R_a \) resistances in (1) can be calculated as follows:

\[
R_a(z_{tg}, z_{m,03}) = \frac{1}{k \cdot u^*} \left[\ln \left(\frac{z_{m,03} - d}{z_{tg} - d} \right) - \psi_H \left(\frac{z_{m,03} - d}{L} \right) \right] + \psi_H \left(\frac{z_{tg} - d}{L} \right)
\]

\[
R_a(d + z_0, z_{m,03}) = \frac{1}{k \cdot u^*} \left[\ln \left(\frac{z_{m,03} - d}{z_0} \right) - \psi_H \left(\frac{z_{m,03} - d}{L} \right) + \psi_H \left(\frac{z_0}{L} \right) \right]
\]

with \(\psi_H(\zeta) \), the similarity function for heat, defined as (Dyer, 1974; Garratt, 1992):

\[
\psi_H(\zeta) = \begin{cases}
2 \ln \left[\frac{1 + x^2}{2} \right], & \text{when } \zeta < 0 \\
-5\zeta, & \text{when } \zeta \geq 0
\end{cases}
\]

with \(x = (1 - 16 \cdot \zeta)^{1/4} \).

The Obukhov length needed to account for the atmospheric stability can be estimated by following the procedure illustrated in the appendix of this chapter, or a guess value can be assumed according to the typical conditions of the area for which the fluxes should be calculated (e.g. 1/L=0 for neutral conditions, 1/L=-0.01 for unstable or 1/L=-0.1 for very unstable conditions, 1/L=+0.01 for stable conditions). If no information on atmospheric stability is known at all, the \(\psi_M(\zeta) \) and \(\psi_H(\zeta) \) functions in (1), (4) and (5) can be set to zero and then the atmosphere is assumed as neutral.

The resistance to \(\text{O}_3 \) diffusion in the laminar sub-layer \(R_b \) can be calculated with the formulation of Wesely and Hicks (1977):

\[
R_b = \frac{2}{k \cdot u^*} \left(\frac{Sc}{Pr} \right)^{2/3}
\]

where \(k \) is the von Kármán constant, \(Sc=0.93 \) is the Schmidt number for \(\text{O}_3 \), and \(Pr=0.71 \) is the Prandtl number of air.

The surface resistance to \(\text{O}_3 \) deposition \(R_{surf} \) is defined as follows:
\[
R_{\text{surf}} = \frac{1}{\frac{\text{LAI}}{R_{\text{sto}}} + \frac{\text{SAI}}{R_{\text{ext}}} + \frac{1}{R_{\text{inc}} + R_{\text{soil}}}}
\]

where \(R_{\text{sto}}\) is the leaf-scale stomatal resistance to \(\text{O}_3\) of the vegetated surface, \(R_{\text{ext}}\) is the leaf-scale resistance of the external vegetation surfaces (e.g. cuticles, bark, etc.) to \(\text{O}_3\) deposition, \(R_{\text{soil}}\) is the soil resistance to \(\text{O}_3\) deposition, \(R_{\text{inc}}\) is the in-canopy air resistance to the \(\text{O}_3\) transfer to the soil, \(\text{LAI}\) is the projected leaf area (\(m^2 \cdot m^{-2}\)), and \(\text{SAI}\) is the surface area of the canopy (green \(\text{LAI}\) + senescent \(\text{LAI}\) + twig and branch surfaces). \(R_{\text{sto}}\) is a plant species specific function of air temperature and humidity, solar radiation and soil water content. It can be modelled – as described in the manual – by means of the Jarvis–Stewart algorithm (Jarvis, 1976; Emberson et al., 2000a) and data on the photosynthetically active radiation (light), air temperature (temp) and relative humidity (to calculate vapour pressure deficit - VPD) at the canopy top (Tuovinen and Simpson, 2008), the soil water potential (SW), and plant phenology (phen):

\[
R_{\text{sto}} = \frac{1}{g_{\text{sto}}} = g_{\text{max}} \cdot [\min(f_{\text{phen}}, f_{\text{O3}})] \cdot f_{\text{light}} \cdot \max\{f_{\text{min}}, (f_{\text{temp}} \cdot f_{\text{VPD}} \cdot f_{\text{SW}})\}
\]

where \(g_{\text{max}}\) is the stomatal conductance of \(\text{O}_3\) in non-limiting conditions and the \(f\) functions \(f_{\text{phen}}, f_{\text{light}}, f_{\text{temp}}, f_{\text{VPD}}, f_{\text{SW}}\) are species-specific functions which describe the variation of the stomatal conductance with phenology, light, air temperature, leaf-to-air vapour pressure deficit and soil water potential, respectively. For details, see Section III.3.4.3 of the manual on the modelling of the stomatal conductance.

The resistance to cuticular deposition of \(\text{O}_3\), \(R_{\text{ext}}\), and the soil resistance, \(R_{\text{soil}}\), are set respectively to 2500 s \(m^{-1}\) and 200 s \(m^{-1}\) for consistency with the EMEP model (Simpson et al., 2012).

The in-canopy resistance \(R_{\text{inc}}\) can be calculated according to van Pul & Jacobs (1994):

\[
R_{\text{inc}} = b \cdot \text{SAI} \cdot h/u^*
\]

where \(b = 14 \; m^{-1}\) is an empirical constant, \(h\) is the height of the canopy and \(\text{SAI}\) is the surface area of the canopy.

It is worth noticing that all the resistances in the above equations are expressed in the unit of \(s \; m^{-1}\). Thus, the stomatal conductance, usually given in \(mmol \; m^{-2} \; s^{-1}\), should be converted to \(m \; s^{-1}\). The conversion can be done by multiplying \(g_{\text{stom}}\) by \(R \cdot T/P\) with the gas constant \(R = 8.314 \; J \; mol^{-1} \; K^{-1}\), the air temperature \(T\) in Kelvin and the atmospheric pressure \(P\) in Pa. It should be noted that \(g_{\text{stom}}\) is the stomatal conductance to \(\text{O}_3\), and not to water vapour; stomatal conductance to water vapour can be converted to \(\text{O}_3\) by multiplying it by 0.663.

Case 2: Calculation of the \(\text{O}_3\) concentration over a target surface from measurements made above a different surface

This case typically occurs with forests, for which \(\text{O}_3\) concentrations must be derived from measurements made over grassy areas or other land-cover types (Tuovinen et al., 2009). The \(\text{O}_3\) concentrations measured over e.g. short grasslands are used to estimate the \(\text{O}_3\) concentrations at a reference height that is greater than the forest height, and then the gradient profile appropriate for the forest surface is applied to derive the concentrations at the top of the forest canopy. It should be noted, however, that there are potentially significant uncertainties involved in this approach. In addition to the roughness sub-layer effect mentioned above (Tuovinen & Simpson, 2008), the application of the profile functions presented here inherently assume extensive homogeneous surfaces (i.e. an adequate
fetch). The validity of the method is compromised if the measurements are taken close to the forest edge, for example (Tuovinen et al., 2009).

The typical situation is that described in Figure 3.3, where the O₃ concentration $O₃(z_{m,O3})$ and the wind speed $u(z_{m,O3})$ are measured over a reference surface (e.g. grassland) at a measuring height $z_{m,O3}$ and $z_{m,w}$ respectively. The aerodynamic features of the reference surface (h, d, z_0, LAI, SAI) as well as all the resistances to O₃ deposition (r_a, r_b, r_{stom}, r_{ext}, r_{inc}, r_{soil}) over the reference surface should be known. The same is true for the target surface (e.g. forest), for which h, d, z_0, LAI, SAI, as well as all the resistances to O₃ deposition (R_a, R_b, R_{stom}, R_{ext}, R_{inc}, R_{soil}) should be known.

![Resistive network for the calculation of the O₃ concentration at the top of a target canopy (e.g. forest) when O₃ and meteorological measurements are available above a different vegetated surface (e.g. grassland) (Case 2).](image)

Figure 3.3 Resistive network for the calculation of the O₃ concentration at the top of a target canopy (e.g. forest) when O₃ and meteorological measurements are available above a different vegetated surface (e.g. grassland) (Case 2).

The estimation of the O₃ concentration at the top of the target canopy $O₃(z_{tgt})$ requires two steps:

i) the calculation of the O₃ concentration at an height (above the reference and the target surfaces) where it is not influenced by variations in the underlying surface;

ii) the calculation of the O₃ concentration at the desired height above the target surface.

Step i) Calculation of the O₃ concentration at a height where it is not influenced by surface variability:

First of all the O₃ concentration should be calculated at a height z_{up} at which it is not influenced by variation in the properties of the underlying surface. This height is usually assumed at 50 m (Simpson et al., 2012).

For this sake the friction velocity u^* above the reference surface should be calculated analogous to (2):
\[u_{ref}^* = \frac{k \cdot u(z_{m,w})}{\ln \left(\frac{z_{m,w} - d_{ref}}{z_{0,ref}} \right) - \Psi_M \left(\frac{z_{m,w} - d_{ref}}{L} \right) + \Psi_M \left(\frac{z_{0,ref}}{L} \right)} \]

where the subscripts ref indicate that the parameters refer to the reference surface (e.g. grassland). The Obukhov length and the \(\Psi_M(\cdot) \) function have been already introduced in the previous section ((3)).

Then the \(O_3 \) concentration at the height \(z_{up} \) is given by:

\[O_3(z_{up}) = \frac{O_3(z_{m,03})}{1 - r_a(z_{m,03}, z_{up}) + r_b + r_{surf}} \]

where the two atmospheric resistances are given by the following expressions:

\[r_a(z_{m,03}, z_{up}) = \frac{1}{k \cdot u_{ref}^*} \left[\ln \left(\frac{z_{up} - d_{ref}}{z_{m,03} - d_{ref}} \right) - \Psi_H \left(\frac{z_{up} - d_{ref}}{L} \right) + \Psi_H \left(\frac{z_{m,03} - d_{ref}}{L} \right) \right] \]

\[r_a(d_{ref} + z_0, z_{up}) = \frac{1}{k \cdot u_{ref}^*} \left[\ln \left(\frac{z_{up} - d_{ref}}{z_{0,ref}} \right) - \Psi_H \left(\frac{z_{up} - d_{ref}}{L} \right) + \Psi_H \left(\frac{z_{0,ref}}{L} \right) \right] \]

with the friction velocity \(u_{ref}^* \) calculated with (11) and the similarity function \(\Psi_H(\cdot) \) defined as in (6).

The resistance \(r_b \) is calculated with (7 by using \(u_{ref}^* \) for \(u^* \).

The resistance \(r_{surf} \) is calculated in a way analogous to what was explained for the case 1 ((8, 9 and 10) by taking into account the appropriate geometry, LAI, SAI and the \(f_\) functions for the reference canopy, and by setting \(r_{ext} \) and \(r_{soil} \) to the values indicated for \(R_{ext} \) and \(R_{soil} \) above.

Step ii) Calculation of the \(O_3 \) concentration at the desired height above the target surface:

Once the \(O_3 \) concentration at the height \(z_{up} \) is known, the \(O_3 \) concentration at the target height canopy \(O_3(z_{tgt}) \) above the target surface can be calculated.

First the friction velocity above the target surface \(u_{tgt}^* \) should be calculated as:

\[u_{tgt}^* = \frac{k \cdot u(z_{up})}{\ln \left(\frac{z_{up} - d_{tgt}}{z_{0,tgt}} \right) - \Psi_M \left(\frac{z_{up} - d_{tgt}}{L} \right) + \Psi_M \left(\frac{z_{0,tgt}}{L} \right)} \]

where \(d \) and \(z_0 \) now refer to the target surface (‘tgt’ suffix). The wind speed at the height \(z_{up} \) which appears in (15 as \(u(z_{up}) \) – the height at which the wind is assumed not to be influenced by variations in the underlying surface – can be calculated by the following formula:

\[u(z_{up}) = \frac{u_{ref}^*}{k} \left[\ln \left(\frac{z_{up} - d_{ref}}{z_{0,ref}} \right) - \Psi_M \left(\frac{z_{up} - d_{ref}}{L} \right) + \Psi_M \left(\frac{z_{0,ref}}{L} \right) \right] \]

where here \(d \) and \(z_0 \) refer to the reference surface (i.e. the grassland).

Then the \(O_3 \) concentration at the desired height \(z_{tgt} \) above the target surface is given by:
The resistance calculated with (12 and the two atmospheric resistances – which refer to the target surface – are given by the following expressions:

\[
O_3(z_{tgt}) = O_3(z_{up}) \cdot \left[1 - \frac{R_a(z_{tgt}, z_{up})}{R_a(d + z_0, z_{up}) + R_b + R_{surf}} \right]
\]

where
\[O_3(z_{up})\]
was calculated with (12 and the two atmospheric resistances – which refer to the target surface – are given by the following expressions:

\[
R_a(z_{tgt}, z_{up}) = \frac{1}{k \cdot u^*_{tgt}} \left[\ln \left(\frac{z_{up} - d_{tgt}}{z_{tgt} - d_{tgt}} \right) - \Psi_H \left(\frac{z_{up} - d_{tgt}}{L} \right) \right]
\]

\[
R_a(d + z_0, z_{up}) = \frac{1}{k \cdot u^*_{tgt}} \left[\ln \left(\frac{z_{up} - d_{tgt}}{z_0, tgt} \right) - \Psi_H \left(\frac{z_{up} - d_{tgt}}{L} \right) + \Psi_H \left(\frac{z_0, tgt}{L} \right) \right]
\]

with the friction velocity \(u^*_{tgt}\) calculated with (15 and the similarity function \(\Psi_H(\cdot)\) defined as in (6).The resistance \(R_b\) is calculated with (7 by using \(u^*_{tgt}\) for \(u^*\). The resistance \(R_{surf}\) is calculated in a way analogous to what was explained for Case 1 ((8, (9 and (10) by taking into account the appropriate geometry, LAI, SAI and the \(f\) functions for the target canopy.

Method c) Concentration profiles with no stability correction

If no information on atmospheric stability is available, method b) can be simplified by ignoring the stability correction by setting the value of \(\Psi_M(\cdot)\) and \(\Psi_H(\cdot)\) functions in (1, (4 and (5 (the shaded terms) to zero. By doing so, the atmospheric stability is assumed to be neutral.

3.3 References

3.4 Appendix

Estimation of the Obukhov length (L)

The Obukhov length L (m) is an indicator of the atmospheric stability, but its calculation requires that some other parameters are estimated aside. L is defined by the following equation:

\[L = -\frac{u^3}{k \frac{g}{T} \frac{H}{\rho c_p}} \]

where \(u^* \) is the friction velocity (m/s), \(k \) is the Von Kármán constant (0.41, adim), \(g \) is the gravity acceleration (9.8 m s\(^{-2}\)), \(T \) is the air temperature (K), \(H \) is the sensible heat flux (W m\(^{-2}\)), \(\rho \) is the air density (kg m\(^{-3}\)), \(c_p \) is the specific heat at constant pressure (1048 J kg\(^{-1}\) K\(^{-1}\)). Not all these data are usually available from traditional slow meteorological stations, in particular \(u^* \) and \(H \). Relatively easy measurements of \(u^* \) and \(H \) can be performed with an ultrasonic anemometer but nearly always it is not available. Hence, to estimate L a model of \(H \) and \(u^* \), and also of the net radiation (\(R_n \)) which is required for the \(H \) estimation, are needed.

Estimation of the net radiation (\(R_n \))

Net radiation can be estimated using the methodology proposed by Holtslag & Van Ulden (1983):

\[R_n = \frac{(1-A)Q_{SW} + c_1T^6 - \sigma T^4 + c_2N}{1 + c_3} \]

where \(A \) is the albedo (fraction between 0..1), \(T \) is the air temperature K, \(N \) is the cloud cover (%), \(c_1 \) and \(c_2 \) are constants (whose values are respectively 5.31\(\cdot \)10\(^{-13}\) W m\(^{-2}\) and 60 W m\(^{-2}\)), \(\sigma \) is the Stefan-Boltzmann constant (5.67E-08 W m\(^{-2}\) K\(^{-4}\)), \(Q_{SW} \) is the shortwave radiation (the global radiation which is typically available from traditional meteorological stations, W m\(^{-2}\)) and \(c_3 \) is a temperature dependent parameter which will be presented few lines below.

The cloud cover \(N \) can be estimated from the measured shortwave radiation taking into account the solar elevation angle (\(\psi \), degree) with the following equation taken from Holtslag & Van Ulden (1983):

\[N = b_2 \sqrt{\frac{1}{b_1} \left(1 - \frac{Q_{SW}}{\left(990 \sin \psi - 30\right)} \right)} \]

where: \(b_1 \) and \(b_2 \) are empirical constants whose values are respectively 0.75 and 3.4. The solar elevation angle \(\psi \) (degrees) can be calculated by downloading the tool available in the
NOAAweb site (http://www.esrl.noaa.gov/gmd/grad/solcalc/calcdetails.html). The c_3 parameter is obtained by the following equation:

\begin{equation}
(23) \quad c_3 = 0.38 \cdot ((1 - \alpha) \cdot S + 1)/(S + 1)
\end{equation}

where α is the water availability parameter described in Beljaars and Holtslag (1989 and 1991) and whose values can be taken from Error! Reference source not found. Hanna & Chang, 1992), and S is a temperature dependent parameter described by the following equation derived from the tabulated values of Hanna & Chang (1992):

\begin{equation}
(24) \quad S = 1.5 \cdot e^{-0.060208041 \cdot T}
\end{equation}

with T the air temperature in Celsius degrees.

Table A3.1 Values for the parameter α proposed by Hanna & Chang (1992).

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.2</td>
<td>Arid desert without rainfalls for months</td>
</tr>
<tr>
<td>0.2</td>
<td>0.4</td>
<td>Rural arid area</td>
</tr>
<tr>
<td>0.4</td>
<td>0.6</td>
<td>Agricultural fields in periods with no rainfalls for long periods</td>
</tr>
<tr>
<td>0.5</td>
<td>1</td>
<td>Urban environment</td>
</tr>
<tr>
<td>0.8</td>
<td>1.2</td>
<td>Agricultural fields or forests with sufficient water availability</td>
</tr>
<tr>
<td>1.2</td>
<td>1.4</td>
<td>Big lake or ocean, far at least 10 km from the shore</td>
</tr>
</tbody>
</table>

Estimation of the sensible heat flux (H)

Sensible heat fluxes can be modelled using the methodology proposed by Holtslag & Van Ulden (1983):

\begin{equation}
(25) \quad H = \frac{(1 - \alpha) + S}{1 + S} (R_n + Q_A - G) - \alpha \beta
\end{equation}

where Q_A is the anthropogenic heat flux (which is always set equal to zero as suggested by Hanna & Chang, 1992), S and α are respectively the temperature dependent parameter and the water availability parameter just described few lines above (Error! Reference source not found. and Error! Reference source not found.), β is a constant value equal to 20 W m$^{-2}$ which takes into account that sensible heat flux is usually negative just before the sunset (Hanna & Chang 1992), and G is the ground heat flux assumed as a fraction of the net radiation

\begin{equation}
(26) \quad G = \alpha \cdot R_n
\end{equation}

with α a constant value ($a=0.1$ for rural areas and $a=0.3$ for urban areas) taken from Doll et al. (1985). During the nighttime hours ($R_n<50$ W m$^{-2}$) the sensible heat flux is calculated as $H = -\alpha \beta$.

21
Estimation of the friction velocity (u^*)

The friction velocity can be estimated following the methodology proposed in Bassin et al. (2003). When $H < 1 \ W \ m^{-2}$ (Stable atmosphere) u^* is calculated by the following equation:

$$u^* = \frac{0.5 \ k \cdot U}{\ln((z_{ref} - d)/z_0)} \left(1 + \frac{1 - \frac{4(5 \cdot g \cdot z_{ref} \cdot \theta_* \cdot \ln((z_{ref} - d)/z_0)}{k \cdot T_0 \cdot U^2}}{1 + \sqrt{1 - \frac{4(5 \cdot g \cdot z_{ref} \cdot \theta_* \cdot \ln((z_{ref} - d)/z_0)}{k \cdot T_0 \cdot U^2}}}
ight)$$ \hspace{1cm} (27)

where k is the Von Kármán constant, U is the horizontal wind speed ($m \ s^{-1}$), z_{ref} is the measurement height of the wind speed (m), d is the displacement height (m) usually taken as 2/3 of the canopy height, T_0 are the Kelvin degrees at 0°C (i.e. $T_0=273.15 \ K$), z_0 is the roughness length (m) (z_0 values can be taken from the table at page 1.5-12 of WMO, 2008), g is the gravity acceleration ($m \ s^{-2}$) and θ_* is the scale temperature (K) calculated according to the following equation:

$$\theta_* = \frac{-H}{\rho \cdot c_p \cdot u_{neutral}^*}$$ \hspace{1cm} (28)

where $u_{neutral}^*$ ($m \ s^{-1}$) with the following equation:

$$u_{neutral}^* = \frac{U}{k \ln((z_{ref} - d)/z_0)}$$ \hspace{1cm} (29)

When $H > 1 \ W \ m^{-2}$ (unstable atmosphere, the friction velocity is calculated by the following equation:

$$u^* = \frac{k \ U}{\ln [(z_{ref} - d)/z_0]} [1 + d_1 \ln(1 + d_2 d_3)]$$ \hspace{1cm} (30)

where d_1, d_2 and d_3 are respectively:

$$d_1 = \begin{cases} 0.128 + 0.005 \ln \left(\frac{z_0}{(z_{ref} - d)}\right) & \text{if } \frac{z_0}{z_{ref} - d} \leq 0.01 \\ 0.107 & \text{if } \frac{z_0}{z_{ref} - d} > 0.01 \end{cases}$$ \hspace{1cm} (31)

$$d_2 = 1.95 + 32.6 \left(\frac{z_0}{z_{ref} - d}\right)^{0.45}$$ \hspace{1cm} (32)

$$d_3 = \frac{H}{\rho c_p} \frac{kg(z_{ref} - d)}{T_0} \left(\frac{\ln((z_{ref} - d)/z_0)}{k U}\right)^3$$ \hspace{1cm} (33)

References

4 Crops – Additional information on O₃ flux model parameterisation
(Section III.3.5.2 of the manual)

4.1 Wheat and potato

The \(g_{\text{max}} \) values for wheat \((Triticum aestivum)\) and potato \((Solanum tuberosum)\) for Atlantic, Boreal and Continental regions have been derived from published data conforming to a strict set of criteria for use in establishing this key parameter of the flux algorithm. Only data obtained from \(g_{\text{sto}} \) measurements made on cultivars grown either under field conditions or using field-grown plants in open top chambers in Europe were considered. Measurements had to be made during those times of the day and year when \(g_{\text{max}} \) would be expected to occur and full details had to be given of the gas for which conductance measurements were made (e.g. \(\text{H}_2\text{O}, \text{CO}_2, \text{O}_3 \)) and the leaf surface area basis on which the measurements were given (e.g. total or projected). All \(g_{\text{sto}} \) measurements were made on the flag leaf for wheat and for sunlit leaves of the upper canopy for potato using recognized \(g_{\text{sto}} \) measurement apparatus. Tables 4.1 and 4.2 give details of the published data used for \(g_{\text{max}} \) derivation on adherence to these rigorous criteria. Figure 4.1 shows the mean, median and range of \(g_{\text{max}} \) values for each of the 14 and four different cultivars that provide the approximated \(g_{\text{max}} \) values of 500 and 750 mmol \(\text{O}_3 \text{ m}^{-2} \text{ s}^{-1} \) for wheat and potato, respectively.

It should be noted that the wheat \(g_{\text{max}} \) value has been parameterised from data collected for spring and winter wheat cultivars. For potato additional \(g_{\text{max}} \) values from three USA grown cultivars are included in Figure 4.1 for comparison (Stark, 1987), further substantiating the \(g_{\text{max}} \) value established for this crop type.

González-Fernández et al. (2013) compiled data from 25 years of phenology data from areas representative of the Mediterranean region with Atlantic climate influence, coastal Mediterranean and continental Mediterranean climates in Spain together with stomatal conductance measurements made over five years for winter bread wheat (3 cultivars) and durum wheat (2 cultivars) growing near Madrid. In this study, \(g_{\text{max}} \) was derived from a literature review of wheat growing under Mediterranean conditions (10 cultivars of bread wheat and 2 cultivars of durum wheat). For further details including boundary line plots for the component parameters, see González-Fernández et al. (2013). Parameterisations of the O₃ stomatal flux model are provided in Table III.9 of the manual.

![Wheat g_max](image1.png)

![Potato g_max](image2.png)

Figure 4.1 Derivation of \(g_{\text{max}} \) for wheat and potato (see Tables 4.1 and 4.2 for details).
Table 4.1 Derivation of wheat g_{max} parameterisation. PLA = projected leaf area. The data used was first published in Pleijel et al. (2007) and updated in Grünhage et al. (2012).

<table>
<thead>
<tr>
<th>Reference</th>
<th>g_{max} [mmol O$_3$ m$^{-2}$ s$^{-1}$ PLA]</th>
<th>g_{max} derivation</th>
<th>Country</th>
<th>Wheat type and cultivar</th>
<th>Time of day</th>
<th>Time of year</th>
<th>g_{max} measuring apparatus</th>
<th>Gas / leaf area</th>
<th>Growing conditions</th>
<th>Leaf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Araus et al. (1989)</td>
<td>435</td>
<td>Value in Table. Cultivar and sowing time (average of 3) g_{max} used. Means of 5 to 7 replicates. g_{max} mmol CO$_2$ m$^{-2}$ s$^{-1}$. Adaxial: 313, abaxial: 149</td>
<td>Spain</td>
<td>Spring wheat, Kolibri</td>
<td>9 to 13 hrs</td>
<td>14 March to 21 May</td>
<td>LI 1600 steady state porometer</td>
<td>CO$_2$ / PLA</td>
<td>Field</td>
<td>Flag</td>
</tr>
<tr>
<td>Araus et al. (1989)</td>
<td>376</td>
<td>Value in Table. Means and SE ± of 5 to 7 replicates. g_{max} mmol CO$_2$ m$^{-2}$ s$^{-1}$. Adaxial: 267 ± 29, abaxial: 92 ± 16</td>
<td>Spain</td>
<td>Spring wheat, Astral</td>
<td>9 to 13 hrs</td>
<td>14 March to 21 May</td>
<td>LI 1600 steady state porometer</td>
<td>CO$_2$ / PLA</td>
<td>Field</td>
<td>Flag</td>
</tr>
<tr>
<td>Araus et al. (1989)</td>
<td>366</td>
<td>Value in Table. Means and SE ± of 5 to 7 replicates. g_{max} mmol CO$_2$ m$^{-2}$ s$^{-1}$. Adaxial: 251 ± 15, abaxial: 99 ± 22</td>
<td>Spain</td>
<td>Spring wheat, Boulimiche</td>
<td>9 to 13 hrs</td>
<td>14 March to 21 May</td>
<td>LI 1600 steady state porometer</td>
<td>CO$_2$ / PLA</td>
<td>Field</td>
<td>Flag</td>
</tr>
<tr>
<td>Ali et al. (1999)</td>
<td>660</td>
<td>From graph showing leaf conductance plotted against time in days. Maximum approximately 1 mol H$_2$O m$^{-2}$ s$^{-1}$; ± 0.12. ± SE of 4 to 6 replicates</td>
<td>Denmark</td>
<td>Spring wheat, Cadensa</td>
<td>(Assumed mid-day)</td>
<td>August</td>
<td>IRGA LI-6200</td>
<td>H$_2$O / * (Assume PLA as use LAI)</td>
<td>Field</td>
<td>Lysimeter</td>
</tr>
<tr>
<td>Grütters et al. (1995)</td>
<td>525</td>
<td>Value in text. Maximum measured conductance (0.97 cm$^{-1}$ H$_2$O total leaf area after Jones (1983)).</td>
<td>Germany</td>
<td>Spring wheat, Turbo</td>
<td>11 to 12 hrs</td>
<td>17 June to 7 August</td>
<td>LI 1600 steady state porometer</td>
<td>H$_2$O / total leaf area</td>
<td>Field</td>
<td>OTC & AA</td>
</tr>
<tr>
<td>Daniëlssohn et al. (2003)</td>
<td>548</td>
<td>Value in text. The maximum conductance value, 414 mmol H2O m$^{-2}$ s$^{-1}$, was taken as $g{\text{max}}$ for the Östadi multiplicative model. The conductance values represent the flag leaf and are given per total leaf area.</td>
<td>Sweden</td>
<td>Spring wheat, Dragon</td>
<td>13 hrs</td>
<td>13 August 1996 (AA)</td>
<td>Li-Cor 6200</td>
<td>H$_2$O / total leaf area</td>
<td>Field</td>
<td>OTC & AA</td>
</tr>
<tr>
<td>Körner et al. (1997)</td>
<td>492</td>
<td>Value given in table. 0.91 cm$^{-1}$ for H$_2$O on a total leaf surface area basis.</td>
<td>Austria</td>
<td>Durum wheat, Janus</td>
<td>-</td>
<td>-</td>
<td>Ventilated diffusion porometer</td>
<td>H$_2$O / total leaf area</td>
<td>Field</td>
<td>OTC & AA</td>
</tr>
<tr>
<td>Grünhage et al. (2012)</td>
<td>433</td>
<td>653 mmol H$_2$O m$^{-2}$ s$^{-1}$</td>
<td>Germany</td>
<td>Winter wheat, Astron</td>
<td>measured at 10 hrs</td>
<td>24 May to 1 June 2006</td>
<td>Li-Cor 6400</td>
<td>H$_2$O / total leaf area</td>
<td>OTC (NF)</td>
<td>Flag</td>
</tr>
<tr>
<td>Grünhage et al. (2012)</td>
<td>431</td>
<td>650 mmol H$_2$O m$^{-2}$ s$^{-1}$</td>
<td>Germany</td>
<td>Winter wheat, Pegassos</td>
<td>measured at 10 CET</td>
<td>24 May to 1 June 2006</td>
<td>Li-Cor 6400</td>
<td>H$_2$O / total leaf area</td>
<td>OTC (NF)</td>
<td>Flag</td>
</tr>
<tr>
<td>Grünhage et al. (2012)</td>
<td>556</td>
<td>839 mmol H$_2$O m$^{-2}$ s$^{-1}$ (adaxial=524, abaxial=315)</td>
<td>Germany</td>
<td>Winter wheat, Opus</td>
<td>measured at 11 CET</td>
<td>26 May to 02 June 2009</td>
<td>Leaf porometer SC-1</td>
<td>H$_2$O / PLA</td>
<td>Field</td>
<td>Flag</td>
</tr>
<tr>
<td>Grünhage et al. (2012)</td>
<td>511</td>
<td>770 mmol H$_2$O m$^{-2}$ s$^{-1}$ (adaxial=439, abaxial=331)</td>
<td>Germany</td>
<td>Winter wheat, Manager +</td>
<td>measured at 13 CET</td>
<td>26 May to 02 June 2009</td>
<td>Leaf porometer SC-1</td>
<td>H$_2$O / PLA</td>
<td>Field</td>
<td>Flag</td>
</tr>
<tr>
<td>Grünhage et al. (2012)</td>
<td>511</td>
<td>729 mmol H$_2$O m$^{-2}$ s$^{-1}$ (adaxial=451, abaxial=278)</td>
<td>Germany</td>
<td>Winter wheat, Carenus</td>
<td>measured at 13 CET</td>
<td>26 May to 02 June 2009</td>
<td>Leaf porometer SC-1</td>
<td>H$_2$O / PLA</td>
<td>Field</td>
<td>Flag</td>
</tr>
<tr>
<td>Grünhage et al. (2012)</td>
<td>508</td>
<td>849 mmol H$_2$O m$^{-2}$ s$^{-1}$ (adaxial=485, abaxial=364)</td>
<td>Germany</td>
<td>Winter wheat, Limes</td>
<td>measured at 11:30 CET</td>
<td>26 May to 02 June 2009</td>
<td>Leaf porometer SC-1</td>
<td>H$_2$O / PLA</td>
<td>Field</td>
<td>Flag</td>
</tr>
<tr>
<td>Grünhage et al. (2012)</td>
<td>508</td>
<td>766 mmol H$_2$O m$^{-2}$ s$^{-1}$ (adaxial=510, abaxial=256)</td>
<td>Germany</td>
<td>Winter wheat, Soissons</td>
<td>measured at 11:30 CET</td>
<td>26 May to 02 June 2009</td>
<td>Leaf porometer SC-1</td>
<td>H$_2$O / PLA</td>
<td>Field</td>
<td>Flag</td>
</tr>
<tr>
<td>Grünhage et al. (2012)</td>
<td>508</td>
<td>694 mmol H$_2$O m$^{-2}$ s$^{-1}$ (adaxial=595, abaxial=299)</td>
<td>Germany</td>
<td>Winter wheat, Cubus</td>
<td>measured at 11:30 CET</td>
<td>20 May to 02 June 2009</td>
<td>Leaf porometer SC-1</td>
<td>H$_2$O / PLA</td>
<td>Field</td>
<td>Flag</td>
</tr>
<tr>
<td>Grünhage et al. (2012)</td>
<td>474</td>
<td>714.4 ± 42.1 mmol H$_2$O m$^{-2}$ s$^{-1}$</td>
<td>France</td>
<td>Winter wheat, Soissons</td>
<td>11 to 16 CET</td>
<td>6 to 27 May 2009</td>
<td>PP systems CIRAS-2</td>
<td>H$_2$O / PLA</td>
<td>Field</td>
<td>Flag</td>
</tr>
<tr>
<td>Grünhage et al. (2012)</td>
<td>474</td>
<td>741.6 ± 72.8 mmol H$_2$O m$^{-2}$ s$^{-1}$</td>
<td>France</td>
<td>Winter wheat, Premio</td>
<td>11 to 16 CET</td>
<td>6 to 27 May 2009</td>
<td>PP systems CIRAS-2</td>
<td>H$_2$O / PLA</td>
<td>Field</td>
<td>Flag</td>
</tr>
</tbody>
</table>

Mean: 497
Median: 492
Range: 366 to 660 mmol O$_3$ m$^{-2}$ s$^{-1}$
Table 4.2
Derivation of potato g\(_{\text{max}}\) parameterisation. PLA = projected leaf area.

<table>
<thead>
<tr>
<th>Reference</th>
<th>(g_{\text{max}}) ([\text{mmol O}_3 \text{ m}^{-2} \text{s}^{-1} \text{PLA}])</th>
<th>(g_{\text{max}}) derivation</th>
<th>Country</th>
<th>Potato cultivar</th>
<th>Time of day</th>
<th>Time of year</th>
<th>(g_{\text{max}}) measuring apparatus</th>
<th>Gas / leaf area</th>
<th>Growing conditions</th>
<th>Leaf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jeffries (1994)</td>
<td>800</td>
<td>Value given in Figure. Maximum value of 16 mm s(^{-1}). Error bar represents SE of the difference between two means (n=48).</td>
<td>Scotland</td>
<td>Maris piper</td>
<td>8 to 16 hrs</td>
<td>June</td>
<td>Diffusion porometer</td>
<td>Assumed (\text{H}_2\text{O} / \text{assumed PLA})</td>
<td>Field</td>
<td>Fully expanded in upper canopy</td>
</tr>
<tr>
<td>Vos & Groenwald (1989)</td>
<td>665</td>
<td>Value given in Figure. Maximum value of 13.3 mm s(^{-1}). Replicates approx. 20, the coefficient of variation typically ranged from 15 to 25%.</td>
<td>Netherlands</td>
<td>Bintje</td>
<td>-</td>
<td>June / July</td>
<td>Li-Cor 1600 steady state diffusion porometer</td>
<td>(\text{H}_2\text{O} / \text{PLA})</td>
<td>Field</td>
<td>Youngest fully grown leaf</td>
</tr>
<tr>
<td>Vos & Groenwald (1989)</td>
<td>750</td>
<td>Value given in Figure. Maximum value of 15 mm s(^{-1}). Replicates approx. 20, the coefficient of variation typically ranged from 15 to 25%.</td>
<td>Netherlands</td>
<td>Saturna</td>
<td>-</td>
<td>June</td>
<td>Li-Cor 1600 steady state diffusion porometer</td>
<td>(\text{H}_2\text{O} / \text{PLA})</td>
<td>Field</td>
<td>Youngest fully grown leaf</td>
</tr>
<tr>
<td>Marshall & Vos (1991)</td>
<td>643</td>
<td>Value given in Figure. (g_{\text{max}}) of 527 mmol (\text{H}_2\text{O} \text{ m}^{-2} \text{s}^{-1}) at intermediate N supply. Each point represents the mean of at least three leaves (usually four).</td>
<td>Netherlands</td>
<td>Prominent</td>
<td>-</td>
<td>July</td>
<td>LCA2 portable infra-red gas analyser</td>
<td>(\text{H}_2\text{O} / \text{assumed PLA})</td>
<td>Field</td>
<td>Most recently expanded measurable leaf</td>
</tr>
<tr>
<td>Pleijel et al. (2002)</td>
<td>836</td>
<td>Value given in Table. (g_{\text{max}}) of 1371 mmol (\text{m}^{-2} \text{s}^{-1}) for (\text{H}_2\text{O}) per projected leaf area.</td>
<td>Germany</td>
<td>Bintje</td>
<td>12</td>
<td>June</td>
<td>Li-Cor 6200</td>
<td>(\text{H}_2\text{O} / \text{PLA})</td>
<td>Field</td>
<td>Fully expanded in upper canopy</td>
</tr>
<tr>
<td>Danielsson (2003)</td>
<td>737</td>
<td>Value given in text. (g_{\text{max}}) of 604 mmol (\text{m}^{-2} \text{s}^{-1}) per total leaf area.</td>
<td>Sweden</td>
<td>Kardal</td>
<td>11</td>
<td>July</td>
<td>Li-Cor 6200</td>
<td>(\text{H}_2\text{O} / \text{Total leaf area})</td>
<td>Field</td>
<td>Fully expanded in upper canopy</td>
</tr>
<tr>
<td>Mean</td>
<td>738</td>
<td>Range: 643 to 836</td>
<td>Median</td>
<td>743</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
f_{min}

The data presented in Pleijel et al. (2002) and Danielsson et al. (2003) clearly show that for both species, f_{min} under field conditions frequently reaches values as low as 1% of g_{max}. Hence an f_{min} of 1% of g_{max} is used to parameterise the model for both species.

f_{phen}

The data used to establish the f_{phen} relationships for both wheat and potato are given in Figure 4.2 as °C days from g_{max} (in the case of wheat g_{max} is assumed to occur between growth stages “flag leaf fully unrolled, ligule just visible” and “mid-anthesis”; in the case of potato g_{max} is assumed to occur at the emergence of the first generation of fully developed leaves). Methods for estimating the timing of mid-anthesis and for estimating f_{phen} using the functions illustrated in Figure 4.2 are provided in Section III.3.5.2.1, with the parameterisations given in Table III.9 of the manual.

f_{light}

The data used to establish the f_{light} relationship for both wheat and potato are shown in Figure 4.3.

Figure 4.2 f_{phen} functions for (a) wheat and (b) potato. The potato function was published in Pleijel et al., 2007; the wheat function has since been revised, with new data from Grünhage et al. (2012).

Figure 4.3 Derivation of f_{light} for wheat and potato (see Pleijel et al., 2007 for further details).
The data used to establish the f_{temp} relationship for both wheat and potato are shown in Figure 4.4.

![Wheat, f_{temp} relationship](image1)
![Potato, f_{temp} relationship](image2)

Figure 4.4 Derivation of f_{temp} for wheat and potato (see Pleijel et al., 2007 for further details).

The data used to establish the f_{VPD} relationship for both wheat and potato are shown in Figure 4.5. Under Mediterranean conditions, an alternative parameterization for VPD is provided that has been derived from Figure 4.6. Values of $\Sigma_{\text{VPD crit}}$ for wheat and potato are given in Table III.9 of the manual.

![Wheat, f_{VPD} relationship](image3)
![Potato, f_{VPD} relationship](image4)

Figure 4.5 Derivation of f_{VPD} for wheat and potato (see Pleijel et al., 2007 for further details).

The shape of the f_{PAW} function for wheat and the f_{SWP} for potato are shown in Figure III.9 and III.8 of the manual respectively. It should be noted that the f_{SWP} relationship for potato is derived from data that describe the response of potato g_{sto} to leaf water potential rather than soil water potential. Vos and Oyarzun (1987) state that their results represent long-term effects of drought, caused by limiting supply of water rather than by high evaporative demand, and hence can be assumed to apply to situations where pre-dawn leaf water potential is less than 0.1 to 0.2 MPa. As such, it may be necessary to revise this f_{SWP} relationship so that potato g_{sto} responds more sensitively to increased soil water stress.

28
4.2 Tomato

The parameterisation for tomato (*Solanum lycopersicum*) was derived from g_{sto} measurements made on seven cultivars grown in pots under open-top chambers conditions in southern Europe (Spain and Italy; González-Fernández et al., 2014). Daily profiles of g_{sto} were measured in different days from July to October, under varying environmental conditions. All g_{sto} measurements were made in sunlit leaves of the upper canopy using standard g_{sto} measurement systems. The g_{max} value for tomato was set as the average of the values above the 95th percentile of all the g_{sto} measurements (Figure 4.6, Table 4.3).

![Figure 4.6](image)

Derivation of g_{max} for tomato (see González-Fernández et al., 2014 for details).

f_{min}

The f_{min} value for tomato has been derived from the average of the values below the 5th percentile of all the g_{sto} measurements.

f_{phen}

The data used to establish the f_{phen} function for tomato are presented in Figure 4.7. g_{max} was assumed to occur at a fixed number of days since the start of the growing season.

![Figure 4.7](image)

f_{phen} function for tomato (see González-Fernández et al., 2014 for details).
Table 4.3 Maximum stomatal conductance (g_{max}) values reported in field studies. Values were measured on sun exposed leaves under optimum environmental conditions for maximum stomatal opening (González-Fernández et al., 2014).

<table>
<thead>
<tr>
<th>Reference</th>
<th>Year</th>
<th>Country</th>
<th>Tomato cultivar</th>
<th>Time of day</th>
<th>Time of year</th>
<th>Measuring apparatus</th>
<th>Growing conditions</th>
<th>Leaf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bohlool and Hino, 1991</td>
<td>1991</td>
<td>USA</td>
<td>UC2B</td>
<td>Midday</td>
<td>June to September</td>
<td>Open system</td>
<td>Youngest expanded</td>
<td>2nd expanded leaf from the bottom</td>
</tr>
<tr>
<td>Bohlool and Hino, 1991</td>
<td>1991</td>
<td>USA</td>
<td>UC2B</td>
<td>Midday</td>
<td>June to September</td>
<td>Open system</td>
<td>Youngest expanded</td>
<td>2nd expanded leaf from the bottom</td>
</tr>
<tr>
<td>Elze et al., 1991</td>
<td>1991</td>
<td>UK or The Netherlands</td>
<td>Alsco Craig</td>
<td>Midday</td>
<td>June to September</td>
<td>Open system</td>
<td>Youngest expanded</td>
<td>2nd expanded leaf from the bottom</td>
</tr>
<tr>
<td>Elze et al., 2014</td>
<td>2014</td>
<td>Italy</td>
<td>Coca di Bere</td>
<td>–</td>
<td>–</td>
<td>Open system</td>
<td>Youngest expanded</td>
<td>2nd expanded leaf from the bottom</td>
</tr>
<tr>
<td>Gukit et al., 2005</td>
<td>2005</td>
<td>Italy</td>
<td>Coca di Bere</td>
<td>–</td>
<td>–</td>
<td>Open system</td>
<td>Youngest expanded</td>
<td>2nd expanded leaf from the bottom</td>
</tr>
<tr>
<td>Gukit et al., 2005</td>
<td>2005</td>
<td>Italy</td>
<td>Coca di Bere</td>
<td>–</td>
<td>–</td>
<td>Open system</td>
<td>Youngest expanded</td>
<td>2nd expanded leaf from the bottom</td>
</tr>
<tr>
<td>Huis et al., 2000</td>
<td>2000</td>
<td>Canada</td>
<td>New Yorker</td>
<td>10–14 h</td>
<td>–</td>
<td>Open system</td>
<td>Youngest expanded</td>
<td>2nd expanded leaf from the bottom</td>
</tr>
<tr>
<td>Patassi, 2011</td>
<td>2011</td>
<td>Italy</td>
<td>Regione</td>
<td>13–14 h</td>
<td>Since May</td>
<td>Open system</td>
<td>Youngest expanded</td>
<td>2nd expanded leaf from the bottom</td>
</tr>
<tr>
<td>Right et al., 2012</td>
<td>2012</td>
<td>Italy</td>
<td>Regione</td>
<td>11–14 h</td>
<td>Since May</td>
<td>Open system</td>
<td>Youngest expanded</td>
<td>2nd expanded leaf from the bottom</td>
</tr>
<tr>
<td>This study (Carna et al., 2008)</td>
<td>2008</td>
<td>Italy</td>
<td>Osvaldo</td>
<td>1–3 h</td>
<td>Since April</td>
<td>Open system</td>
<td>Youngest expanded</td>
<td>2nd expanded leaf from the bottom</td>
</tr>
<tr>
<td>This study (Carna et al., 2008)</td>
<td>2008</td>
<td>Italy</td>
<td>Osvaldo</td>
<td>1–3 h</td>
<td>Since April</td>
<td>Open system</td>
<td>Youngest expanded</td>
<td>2nd expanded leaf from the bottom</td>
</tr>
<tr>
<td>This study (Bauza et al., 2008)</td>
<td>2008</td>
<td>Spain</td>
<td>Nikita</td>
<td>8 to 17 h</td>
<td>Since March</td>
<td>Open system</td>
<td>Youngest expanded</td>
<td>2nd expanded leaf from the bottom</td>
</tr>
<tr>
<td>This study (Bauza et al., 2008)</td>
<td>2008</td>
<td>Spain</td>
<td>Nikita</td>
<td>8 to 17 h</td>
<td>Since March</td>
<td>Open system</td>
<td>Youngest expanded</td>
<td>2nd expanded leaf from the bottom</td>
</tr>
<tr>
<td>This study (Bauza et al., 2008)</td>
<td>2008</td>
<td>Spain</td>
<td>Nikita</td>
<td>8 to 17 h</td>
<td>Since March</td>
<td>Open system</td>
<td>Youngest expanded</td>
<td>2nd expanded leaf from the bottom</td>
</tr>
<tr>
<td>This study (Bauza et al., 2008)</td>
<td>2008</td>
<td>Spain</td>
<td>Nikita</td>
<td>8 to 17 h</td>
<td>Since March</td>
<td>Open system</td>
<td>Youngest expanded</td>
<td>2nd expanded leaf from the bottom</td>
</tr>
<tr>
<td>This study (Bauza et al., 2008)</td>
<td>2008</td>
<td>Spain</td>
<td>Nikita</td>
<td>8 to 17 h</td>
<td>Since March</td>
<td>Open system</td>
<td>Youngest expanded</td>
<td>2nd expanded leaf from the bottom</td>
</tr>
<tr>
<td>This study (Bauza et al., 2008)</td>
<td>2008</td>
<td>Spain</td>
<td>Nikita</td>
<td>8 to 17 h</td>
<td>Since March</td>
<td>Open system</td>
<td>Youngest expanded</td>
<td>2nd expanded leaf from the bottom</td>
</tr>
<tr>
<td>This study (Bauza et al., 2008)</td>
<td>2008</td>
<td>Spain</td>
<td>Nikita</td>
<td>8 to 17 h</td>
<td>Since March</td>
<td>Open system</td>
<td>Youngest expanded</td>
<td>2nd expanded leaf from the bottom</td>
</tr>
<tr>
<td>This study (Bauza et al., 2008)</td>
<td>2008</td>
<td>Spain</td>
<td>Nikita</td>
<td>8 to 17 h</td>
<td>Since March</td>
<td>Open system</td>
<td>Youngest expanded</td>
<td>2nd expanded leaf from the bottom</td>
</tr>
</tbody>
</table>

* This study: González-Fernández et al., 2014; ** Benifaió = site in Eastern Spain.
f_{light}

The data used to establish the f_{light} function for tomato are shown in **Figure 4.8**. The f_{light} modifying function was adjusted by boundary line analysis.

![Tomato, f_{light} relationship](image)

Figure 4.8 Derivation of f_{light} for tomato (see González-Fernández et al., 2014 for details).

f_{temp}

The data used to establish the f_{temp} function for tomato are shown in **Figure 4.9**. The f_{temp} modifying function was adjusted by boundary line analysis.

![Tomato, f_{temp} relationship](image)

Figure 4.9 Derivation of f_{temp} for tomato (see González-Fernández et al., 2014 for details).

f_{VPD}

The data used to establish the f_{VPD} function for tomato are shown in **Figure 4.10**. The f_{VPD} modifying function was adjusted by boundary line analysis.

![Tomato, f_{VPD} relationship](image)
Figure 4.10 Derivation of f_{VPD} for tomato (see González-Fernández et al., 2014 for details).

f_{SW}
No limiting function for soil water content was considered for tomato since constant irrigation is provided during the whole growing period.

4.3 References

5 Forest trees – Additional information on O\textsubscript{3} flux model parameterisation (Section III.3.5.3 of the manual)

5.1 Additional information on parameterisation of forest tree species and sources of information

The parameterisation of the O\textsubscript{3} stomatal flux model DO\textsubscript{3}SE for risk assessment is generally based on data from mature tree species, except for Mediterranean deciduous oak species, for which the parameterisation is based on young trees of three oak species, i.e. Quercus faginea (Portuguese oak), Q. pyrenaica (Pyrenean oak) and Q. robur (penduculate oak). Table III.11 in Chapter 3 of the Modelling and Mapping Manual describes a combined parameterisation for all three Mediterranean oak species. The parameterisations come from experiments used to derive critical levels and represent seedling physiology generally under well-watered conditions (Marzuoli et al., in prep.). Specific parameterisation of the individual species, and in the case of penduculate oak application in different countries, is provided in Table 5.1. Parameterisation of the DO\textsubscript{3}SE model using data from young oak tree species was considered to better represent risk assessment of deciduous trees in Mediterranean areas than the previous parameterisation based on mature Mediterranean beech.

Table 5.1 Parameterisation of the O\textsubscript{3} stomatal flux model for Mediterranean deciduous oak tree species (Marzuoli et al., in prep.).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Forest broadleaf deciduous tree species parameterisation - POD\textsubscript{3}SPEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region</td>
<td>Mediterranean</td>
<td></td>
</tr>
<tr>
<td>Forest type</td>
<td>Broadleaf deciduous</td>
<td></td>
</tr>
<tr>
<td>Species1</td>
<td>Common name</td>
<td>Pedunculate oak, Spain</td>
</tr>
<tr>
<td></td>
<td>Latin name</td>
<td>g\textsubscript{max} mmol O\textsubscript{3} m-2 PLA s-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>235</td>
</tr>
<tr>
<td></td>
<td></td>
<td>235</td>
</tr>
<tr>
<td></td>
<td></td>
<td>310</td>
</tr>
</tbody>
</table>
The values in brackets represent “dummy” values required for DOxSE modelling purposes. “-” = parameterisation not required for this species.

1. See Table 5.2 for source of parameterisations.

2. Soil water content (SWC) is calculated as the soil water content available for transpiration, i.e. the actual SWC minus the SWC at the wilting point. PAWt is the threshold for plant available water (PAW), above which stomatal conductance is at a maximum.

3. The parameterisation for these tree species were predominantly derived from experiments that were conducted under non-limiting water supply. Hence, non-limiting soil water condition should be assumed, represented in the flux model by $f_{SWP} = 1$.

4. Latitude function, see section 5.3; f_{temp} = growing season is assumed to occur when air temperatures fall within T_{min} and T_{max} thresholds of the f_{temp} relationship. Use of actual data is recommended if available.

<table>
<thead>
<tr>
<th></th>
<th>MPa</th>
<th>$^{(i)}$</th>
<th>$^{(ii)}$</th>
<th>$^{(iii)}$</th>
<th>$^{(iv)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWP$_{min}$</td>
<td>MPa</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>f_{O3}</td>
<td>fraction</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Astart_FDiv</td>
<td>day of year</td>
<td></td>
<td>Latitude model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aend_FDiv</td>
<td>day of year</td>
<td></td>
<td>Latitude model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>leaf dimension</td>
<td>cm</td>
<td>4.0</td>
<td>5.0</td>
<td>5.5</td>
<td>2.5</td>
</tr>
<tr>
<td>canopy height</td>
<td>m</td>
<td>25</td>
<td>25</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>f_{phen_a}</td>
<td>fraction</td>
<td>0.3</td>
<td>0.0</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>f_{phen_b}</td>
<td>fraction</td>
<td>(1.0)</td>
<td>(1.0)</td>
<td>(1.0)</td>
<td>(1.0)</td>
</tr>
<tr>
<td>f_{phen_c}</td>
<td>fraction</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>f_{phen_d}</td>
<td>fraction</td>
<td>(1.0)</td>
<td>(1.0)</td>
<td>(1.0)</td>
<td>(1.0)</td>
</tr>
<tr>
<td>f_{phen_e}</td>
<td>fraction</td>
<td>0.3</td>
<td>0.0</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>f_{phen_1}</td>
<td>no. of days</td>
<td>50</td>
<td>20</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>f_{phen_2}</td>
<td>no. of days</td>
<td>(200)</td>
<td>(200)</td>
<td>(200)</td>
<td>(200)</td>
</tr>
<tr>
<td>f_{phen_3}</td>
<td>no. of days</td>
<td>(200)</td>
<td>(200)</td>
<td>(200)</td>
<td>(200)</td>
</tr>
<tr>
<td>f_{phen_4}</td>
<td>no. of days</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Lim$_{start}$</td>
<td>year day</td>
<td>(0.0)</td>
<td>(0.0)</td>
<td>(0.0)</td>
<td>(0.0)</td>
</tr>
<tr>
<td>Lim$_{end}$</td>
<td>year day</td>
<td>(0.0)</td>
<td>(0.0)</td>
<td>(0.0)</td>
<td>(0.0)</td>
</tr>
</tbody>
</table>
Table 5.2 provides reference to the literature where further details of some aspects of the parameterisation of the DO₃SE model for tree species can be found.

Table 5.2
References for the parameterisation of the DO₃SE model for all tree species given in Table III.11 in Mapping Manual and Table 5.1 above.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>References for forest tree species parameterisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region</td>
<td>Boreal</td>
</tr>
<tr>
<td>Forest type</td>
<td>Coniferous</td>
</tr>
<tr>
<td>Tree species</td>
<td>Norway spruce</td>
</tr>
<tr>
<td>g_{max} \text{[value – mmol O}_3\text{ m}^{-2} \text{ PLA s}^{-1]}</td>
<td>Hansson et al. (pers. comm.) [121]; Sellin (2001) [131]</td>
</tr>
</tbody>
</table>

36
<table>
<thead>
<tr>
<th>Variable</th>
<th>Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>light _a</td>
<td>Karlsson et al. (2000); Hansson et al. (pers. comm.)</td>
</tr>
<tr>
<td></td>
<td>Uddling et al. (2005)</td>
</tr>
<tr>
<td></td>
<td>Körner et al. (1995); Thoene et al. (1991); Zweifel et al. (2000, 2001, 2002)</td>
</tr>
<tr>
<td></td>
<td>Kutsch et al. (2001)</td>
</tr>
<tr>
<td></td>
<td>Marzuoli et al. (in prep.)</td>
</tr>
<tr>
<td></td>
<td>Alonso et al. (2007); Bussotti & Ferretti (2007)</td>
</tr>
<tr>
<td>(T_{\text{min}}, T_{\text{opt}}, T_{\text{max}})</td>
<td>Hansson et al. (pers. comm.); Jarvis (1980); Karlsson et al. (2000); Lagergren & Lindroth (2002)</td>
</tr>
<tr>
<td></td>
<td>Uddling et al. (2005)</td>
</tr>
<tr>
<td></td>
<td>Braun et al. (pers. comm.); Zweifel et al. (2000, 2001, 2002)</td>
</tr>
<tr>
<td></td>
<td>Braun et al. (2010)</td>
</tr>
<tr>
<td></td>
<td>Marzuoli et al. (in prep.)</td>
</tr>
<tr>
<td></td>
<td>Bussotti & Ferretti (2007); Corcuera et al. (2005); Elvira et al. (2005); Manes et al. (1997); Ogaya & Peñuelas (2003); Tenhunen et al. (1987); Vitale et al. (2005)</td>
</tr>
<tr>
<td>(\text{VPD}{\text{min}}, \text{VPD}{\text{max}})</td>
<td>Hansson et al. (pers. comm.); Zimmermann et al. (1988)</td>
</tr>
<tr>
<td></td>
<td>Uddling et al. (2005)</td>
</tr>
<tr>
<td></td>
<td>Braun et al. (pers. comm.); Zweifel et al. (2000, 2001, 2002)</td>
</tr>
<tr>
<td></td>
<td>Braun et al. (2010)</td>
</tr>
<tr>
<td></td>
<td>Marzuoli et al. (in prep.)</td>
</tr>
<tr>
<td></td>
<td>Alonso et al. (2007); Bussotti & Ferretti (2007); Elvira et al. (2005); Manes et al. (1997); Sala & Tenhunen (1994); Tognetti et al. (1998); Vitale et al. (2005)</td>
</tr>
<tr>
<td>(\text{SWP}{\text{min}}, \text{SWP}{\text{max}})</td>
<td>Sellin (1997)</td>
</tr>
<tr>
<td></td>
<td>Uddling et al. (2005)</td>
</tr>
<tr>
<td></td>
<td>Braun et al. (2010)</td>
</tr>
<tr>
<td></td>
<td>Marzuoli et al. (in prep.)</td>
</tr>
<tr>
<td></td>
<td>Acherar & Rambal (1992); Alonso et al. (2007); Castell et al. (1994); Elvira et al. (2005); Epron & Dreyer (1990); Pesoli et al. (2003); Rhizopoulos & Mitrokos (1990); Sala & Tenhunen (1992); Tognetti et al. (1998)</td>
</tr>
</tbody>
</table>
5.2 Estimating the start ($A_{\text{start_FD}}$) and end ($A_{\text{end_FD}}$) of the growing season using the latitude model

As described in Section III.3.5.3.1 of Chapter 3 of the Modelling and Mapping Manual, the EMEP latitude model (Simpson et al., 2012) is used to estimate the start ($A_{\text{start_FD}}$) and end ($A_{\text{end_FD}}$) of the growing season of many tree species. The model is mainly used due to its simplicity, but developments are ongoing to improve modelling the start and end of the growing season for tree species (see SBD-B). $A_{\text{start_FD}}$ is defined as the date of leaf unfolding (deciduous & broadleaf evergreen species) or the start of leaf/needle physiological activity (coniferous and evergreen species). For species-specific flux models (POD$_i$SPEC), $A_{\text{start_FD}}$ is estimated by the EMEP latitude model with the exception of temperate conifers south of \sim55°N, where $A_{\text{start_FD}}$ is defined by prevailing environmental conditions (using the f_{temp} function), and for Mediterranean trees where a year round growth period is assumed. $A_{\text{end_FD}}$ is defined as the onset of dormancy; the EMEP latitude model is used to identify $A_{\text{end_FD}}$ again with the exception of temperate conifers south of \sim55°N where $A_{\text{end_FD}}$ is defined by prevailing environmental conditions (using the f_{temp} function) and for Mediterranean trees where a year round growth period is assumed. $A_{\text{end_FD}}$ is defined as the onset of dormancy; the EMEP latitude model is used to identify $A_{\text{end_FD}}$ again with the exception of temperate conifers south of \sim55°N where $A_{\text{end_FD}}$ is defined by prevailing environmental conditions (using the f_{temp} function) and for Mediterranean trees where a year round growth period is assumed. $A_{\text{end_FD}}$ is defined as the onset of dormancy; the EMEP latitude model is used to identify $A_{\text{end_FD}}$ again with the exception of temperate conifers south of \sim55°N where $A_{\text{end_FD}}$ is defined by prevailing environmental conditions (using the f_{temp} function) and for Mediterranean trees where a year round growth period is assumed. $A_{\text{end_FD}}$ is defined as the onset of dormancy; the EMEP latitude model is used to identify $A_{\text{end_FD}}$ again with the exception of temperate conifers south of \sim55°N where $A_{\text{end_FD}}$ is defined by prevailing environmental conditions (using the f_{temp} function) and for Mediterranean trees where a year round growth period is assumed. $A_{\text{end_FD}}$ is defined as the onset of dormancy; the EMEP latitude model is used to identify $A_{\text{end_FD}}$ again with the exception of temperate conifers south of \sim55°N where $A_{\text{end_FD}}$ is defined by prevailing environmental conditions (using the f_{temp} function) and for Mediterranean trees where a year round growth period is assumed.

The model gives a good agreement with observed phenological data for a range of deciduous species (birch, beech and oak; Figure 5.1); with measurements of carbon flux from CarboEurope (http://www.carboeurope.org/) which were used to identify the initiation and cessation of physiological activity; and was also able to describe the onset of forest green-up and dormancy as determined from European remotely sensed data (Zhang et al. 2004). However, there are uncertainties associated with the estimation of key growth periods (e.g. start of physiological activity and onset of dormancy in conifers, initiation of leaf flush and onset of leaf fall in deciduous species) for the “real” species.

![Figure 5.1](image)

Comparison of observational phenological data with the EMEP latitude model. The black lines show the $A_{\text{start_FD}}$ and $A_{\text{end_FD}}$ determined from the EMEP latitude model. The green and orange lines show the onset of green-up and dormancy described by remotely sensed data for the year 2001 (Zhang et al. 2004) and the vertical red lines show the variation in observed dates for sites at specific latitudes for a number of different years.

5.3 References

(Semi-)natural vegetation – Flux model parameterisation for selected (semi-)natural vegetation species and associated flux-effect relationships (Section III.3.5.4 of the manual)

Text to be added in due course.
7 AOT40-based critical levels and response functions for O₃
(Section III.3.7 of the manual)

7.1 Introduction

These are based on accumulation of the hourly mean O₃ concentration at the top of the canopy over a threshold concentration of 40 ppb during daylight hours (when global radiation is more than 50 W m⁻²) for the appropriate time-window (AOT40) and thus do not take account of the stomatal influence on the amount of O₃ entering the plant. Hence, the spatial distribution of the risk of adverse impacts on vegetation generally mimics the spatial distribution of O₃ concentration and is different from the spatial distribution of PODₜ on the pan-European scale (Mills et al., 2011, Simpson et al., 2007). AOT40-based critical levels are suitable for estimating the risk of damage where climatic data or suitable flux models are not available and/or areas where no climatic or water restrictions to stomatal O₃ flux are expected. Economic losses should not be estimated using this method.

Note: The text presented here is reproduced from earlier versions of Chapter 3, with minor editorial changes. Since the O₃ critical levels workshop in Obergurgl in November 2005 only the AOT40-based critical level for horticultural crops has been revised at the 28th ICP Vegetation Task Force meeting in Rome in February 2015. The AOT40-based critical levels were discussed at the most recent critical levels workshop (Madrid, November 2016) and 30th ICP Vegetation Task Force Meeting (Poznan, February 2017) and no changes were recommended to the critical levels for growth, yield or biomass effects. The critical level for visible injury was removed from the manual as there was no longer sufficient scientific support for its inclusion.

7.2 Crops

AOT40-based critical levels and response functions

Agricultural crops

The concentration-based critical level for agricultural crops has been derived from a linear relationship between AOT40 and relative yield for wheat, developed from the results of open-top chamber experiments conducted in Europe and the USA (Table 7.1; Figure 7.1). Newer data (Gelang et al., 2000) has been added to that derived by Fuhrer et al. (1997) and quoted in the earlier version of the Mapping Manual (UNECE, 1996). Thus, the critical level for wheat is based on a comprehensive dataset including 9 cultivars. The AOT40 corresponding to a 5% reduction in yield is 3.3 ppm h (95% Confidence Interval range 2.3-4.4 ppm h). This value has been rounded down to 3 ppm h for the critical level. The critical level for agricultural crops is only applicable when nutrient supply and soil moisture are not limiting, the latter because of sufficient precipitation or irrigation (Fuhrer, 1995).

The time period over which the AOT40 is calculated should be three months and the timing should reflect the period of active growth of wheat and be centred around. For further explanation, please see Mills et al. (2007). It is not recommended that exceedance of the concentration-based critical level for agricultural crops is converted into economic loss; it should only be used as an indication of ecological risk (Fuhrer, 1995).

Horticultural crops

This text was prepared following decisions made at the 2015 Task Force meeting of the ICP Vegetation based on evidence published in González-Fernández et al. (2014). A concentration-based critical level has been derived for horticultural crops that are growing with adequate nutrient and water supply. An AOT40 of 8.4 ppm h (95% Confidence Interval range 1.2-15.6 ppm h) is equivalent to a 5% reduction in fruit yield for tomato, and has been derived from an exposure-response function developed from a comprehensive dataset including 5 O₃-sensitive cultivars ($r^2 = 0.63, p < 0.001$, Figure 7.2, see González-Fernández et al., 2014). This value has been rounded down to 8 ppm h for the critical level. Although
statistical analysis has indicated that water melon may be more sensitive to \(\text{O}_3 \) than tomato, the dataset for water melon is not sufficiently robust for use in the derivation of a critical level because the data is only for one cultivar (Mills et al., 2007). Tomato is considered suitable for the derivation of the critical level since it is classified as a moderately-sensitive crop and a suitably robust function is available. It is also an economically important horticultural crop. Other horticultural crops such as lettuce and bean are more sensitive but have a less robust response-function. The data used in the derivation of the critical level for horticultural crops is from experiments conducted in Spain and Italy. The time period for accumulation of AOT40 is three months, starting at the 4th true leaf stage (BBCH code = 14) which is normally the date of planting (see Section III.3.5.2.1 of the manual for guidance). It is not recommended that the exceedance of the concentration-based critical level for horticultural crops is converted into economic loss; it should only be used as an indication of ecological risk during the most sensitive environmental conditions (Fuhrer, 1995).

The AOT40-based critical levels for crops and the response functions from which they were derived are presented in Table 7.1 and Figures 7.1 and 7.2.

Table 7.1
\textbf{AOT40-based critical levels and response functions for agricultural and horticultural crops.}

<table>
<thead>
<tr>
<th>Category</th>
<th>Agricultural</th>
<th>Horticultural</th>
</tr>
</thead>
<tbody>
<tr>
<td>Representative crop</td>
<td>Wheat</td>
<td>Tomato</td>
</tr>
<tr>
<td>Yield parameter</td>
<td>Grain yield</td>
<td>Fruit yield</td>
</tr>
<tr>
<td>% reduction for critical level</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>Critical level (AOT40, ppm h)</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>Countries involved in experiments</td>
<td>Belgium, Finland, Italy, Sweden</td>
<td>Spain, Italy</td>
</tr>
<tr>
<td>Number of data points</td>
<td>52</td>
<td>17</td>
</tr>
<tr>
<td>Number of cultivars</td>
<td>9</td>
<td>5 ozone-sensitive cultivars</td>
</tr>
<tr>
<td>Data sources</td>
<td>Mills et al., 2007</td>
<td>González-Fernández et al., 2014</td>
</tr>
<tr>
<td>Time period</td>
<td>3 months</td>
<td>3 months</td>
</tr>
<tr>
<td>Response function</td>
<td>(\text{RY} = 0.99 - 0.0161*\text{AOT40})</td>
<td>(\text{RY} = 1.01 - 0.0069*\text{AOT40})</td>
</tr>
<tr>
<td>(r^2)</td>
<td>0.89</td>
<td>0.63</td>
</tr>
<tr>
<td>P value</td>
<td>< 0.001</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>
Figure 7.1 Wheat yield-response function used to derive the concentration-based critical levels for agricultural crops \((r^2 = 0.89) \) (data from Fuhrer et al., 1997 and Gelang et al., 2000, reproduced in Mills et al., 2007). Dotted lines represent 95% confidence intervals.

Figure 7.2 Tomato yield-response function for \(O_3 \)-sensitive cultivars used to derive the concentration-based critical levels for horticultural crops \((r^2 = 0.63, p<0.001) \) (González-Fernández et al., 2014). Dotted lines represent 95% confidence intervals.

Calculating exceedance of the AOT40-based critical levels

Step 1: Determine the accumulation period

Agricultural crops

The timing of the three month accumulation period for agricultural crops should reflect the period of active growth of wheat and be centred on the timing of anthesis. A survey of the development of winter wheat conducted at 13 sites in Europe by ICP Vegetation participants in 1997 and 1998, revealed that anthesis can occur as early as 2 May in Spain and as late
as 3 July in Finland (Mills and Ball, 1998, Mills et al., 2007). Thus, a risk assessment for O₃ impacts on crops would benefit from the use of a moving time interval to reflect the later growing seasons in northern Europe. For guidance, default time periods have been provided for five geographical regions as indicated in Table 7.2.

Horticultural crops

The timing of the start of the growing season is more difficult to define because horticultural crops are repeatedly sown over several months in many regions especially in the Mediterranean area. For local application within Mediterranean countries, appropriate 3 month periods should be selected between March and August for eastern Mediterranean areas, and March and October the Western Mediterranean areas. Since the cultivars used to derive the response function for tomato also grow in other parts of Europe, it is suggested that appropriate 3 month periods are selected between the period April to September for elsewhere in Europe.

Steps 2 and 3: Determine the O₃ concentration at the top of the canopy.

The O₃ concentration at the canopy height can be calculated using the methods described in Section III.3.4.2 of the Modelling and Mapping Manual. For agricultural crops the default height of the canopy is 1 m whilst for horticultural crops (represented by tomato) it is 2 m.

Step 4: Continue as described in Section III.3.7.2 of the Modelling and Mapping Manual.

Table 7.2 Regional classification of countries for default time periods for calculation of AOT40 for agricultural crops. See text for time periods for horticultural crops.

<table>
<thead>
<tr>
<th>Region</th>
<th>Abbreviation</th>
<th>Three month time period</th>
<th>Possible default countries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eastern Mediterranean</td>
<td>EM</td>
<td>1 March to 31 May</td>
<td>Albania, Bosnia and Herzegovina, Bulgaria, Croatia, Cyprus, Greece, FYR Macedonia, Malta, Montenegro, Serbia, Slovenia, Turkey</td>
</tr>
<tr>
<td>Western Mediterranean</td>
<td>WM</td>
<td>1 April to 30 June</td>
<td>Holy See, Italy, Monaco, Portugal, San Marino, Spain</td>
</tr>
<tr>
<td>Continental Central Europe</td>
<td>CCE</td>
<td>15 April to 15 July</td>
<td>Armenia, Austria, Azerbaijan, Belarus, Czech Republic, France¹, Georgia, Germany, Hungary, Kazakhstan, Kyrgyzstan, Liechtenstein, Republic of Moldova, Poland, Romania, Russian Federation, Slovakia, Switzerland, Ukraine</td>
</tr>
<tr>
<td>Atlantic Central Europe</td>
<td>ACE</td>
<td>1 May to 31 July</td>
<td>Belgium, Ireland, Luxembourg, Netherlands, United Kingdom</td>
</tr>
<tr>
<td>Northern Europe</td>
<td>NE</td>
<td>1 June to 31 August</td>
<td>Denmark, Estonia, Finland, Iceland, Latvia, Lithuania, Norway, Sweden</td>
</tr>
</tbody>
</table>

¹ As an average between Western Mediterranean and Atlantic Central Europe
7.3 Forest trees

Scientific basis

The experimental database for trees that was first presented at the UNECE Workshop in Gothenburg 2002 was re-analysed for the Obergurgl Workshop (2005) and expanded to include additional correlations with AOT20, AOT30, and AOT50 (Karlsson et al., 2003). Furthermore, the tree species included in the analysis have been separated into four species categories (Table 7.3) based on the sensitivity of growth responses to O₃. It should be emphasised that this categorisation is based on growth as a measure of effect. As a result of this differentiation of species, linear regressions between exposure and response have the highest r² values (Table 7.4).

Table 7.3 Sensitivity classes for the tree species based on effects of O₃ on growth (Karlsson et al., 2003).

<table>
<thead>
<tr>
<th>Ozone-sensitive species</th>
<th>Moderately ozone-sensitive species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deciduous</td>
<td>Coniferous</td>
</tr>
<tr>
<td>Fagus sylvatica</td>
<td>Picea abies</td>
</tr>
<tr>
<td>Betula pendula</td>
<td>Pinus sylvestris</td>
</tr>
<tr>
<td>Deciduous</td>
<td>Coniferous</td>
</tr>
<tr>
<td>Quercus petrea</td>
<td>Pinus halepensis</td>
</tr>
<tr>
<td>Quercus robur</td>
<td></td>
</tr>
<tr>
<td>Pinus halepensis</td>
<td></td>
</tr>
</tbody>
</table>

Using the sensitivity categories described above, AOT40 gave the highest r² values of the AOTX indices tested (Figure 7.3). However, the difference between the r² values for AOT40 and AOT30 was small (0.62 and 0.61 respectively for the combined birch and beech dataset, Table 7.4).

Based on the analysis described in Table 7.4, the concentration-based critical level of O₃ for forest trees was reduced from an AOT40 value of 10 ppm h (Kärenlampi & Skärby, 1996) to 5 ppm h (range 1-9 ppm h, determined by the 99% confidence intervals), accumulated over one growing season (Figure 7.3). This value of 5 ppm h is associated with a 5% growth reduction per growing season for the deciduous sensitive tree species category (beech and birch). The 5% growth reduction was clearly significant as judged by the 99% confidence intervals. This increase in the robustness of the dataset and the critical level represents a substantial improvement compared to the 10% growth reduction associated with the previous O₃ critical level of an AOT40 of 10 ppm h (Kärenlampi & Skärby, 1996). Furthermore, it represents a continued use of sensitive, deciduous tree species to represent the most sensitive species under most sensitive conditions. As previously, it should be strongly emphasized that these values should not be used to quantify O₃ impacts for forest trees under field conditions. Further information can be found in Karlsson et al. (2004).

Observation of visible injury in young trees in ambient air at Lattecaldo, in southern Switzerland has shown that a reduction of the O₃ critical level to 5 ppm h AOT40 would also protect the most sensitive species from visible injury (Van der Hayden et al., 2001, Novak et al., 2003). Furthermore, Baumgarten et al. (2000) detected visible injury on the leaves of mature beech trees in Bavaria well below 10 ppm h AOT40.
Table 7.4 Statistical data for regression analysis of the relationship between AOTX O₃ exposure indices (in ppm h) and percentage reduction of total and above-ground biomass for different tree species categories (Karlsson et al., 2003).

<table>
<thead>
<tr>
<th>Ozone index/plant category</th>
<th>Linear regression</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r²</td>
</tr>
<tr>
<td>AOT20</td>
<td></td>
</tr>
<tr>
<td>Birch, beech</td>
<td>0.52</td>
</tr>
<tr>
<td>Oak</td>
<td>0.57</td>
</tr>
<tr>
<td>Norway spruce, Scots pine</td>
<td>0.73</td>
</tr>
<tr>
<td>AOT30</td>
<td></td>
</tr>
<tr>
<td>Birch, beech</td>
<td>0.61</td>
</tr>
<tr>
<td>Oak</td>
<td>0.61</td>
</tr>
<tr>
<td>Norway spruce, Scots pine</td>
<td>0.76</td>
</tr>
<tr>
<td>AOT40</td>
<td></td>
</tr>
<tr>
<td>Birch, beech</td>
<td>0.62</td>
</tr>
<tr>
<td>Oak</td>
<td>0.65</td>
</tr>
<tr>
<td>Norway spruce, Scots pine</td>
<td>0.79</td>
</tr>
<tr>
<td>AOT50</td>
<td></td>
</tr>
<tr>
<td>Birch, beech</td>
<td>0.53</td>
</tr>
<tr>
<td>Oak</td>
<td>0.62</td>
</tr>
<tr>
<td>Norway spruce, Scots pine</td>
<td>0.76</td>
</tr>
</tbody>
</table>

AOT40-based critical levels and response functions

The AOT40-based critical level for forest trees is presented in Table 7.5, with the associated function presented in Figure 7.3.

Figure 7.3 The relationship between percentage reduction in biomass and AOT40, on an annual basis, for the deciduous, sensitive tree species category, represented by beech and birch. The relationship was analysed by linear regression with 99% confidence intervals. Explanations for the figure legends can be found in Karlsson et al. (2003).
Table 7.5
AOT40-based critical levels and response functions for forest trees.

<table>
<thead>
<tr>
<th>Category</th>
<th>Deciduous trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Representative species</td>
<td>Birch and beech species</td>
</tr>
<tr>
<td>Effect parameter</td>
<td>Whole tree biomass</td>
</tr>
<tr>
<td>% reduction for critical level</td>
<td>5%</td>
</tr>
<tr>
<td>Critical level (AOT40, ppm h)</td>
<td>5 ppm h</td>
</tr>
<tr>
<td>Countries involved in experiments</td>
<td>Sweden, Finland, Switzerland</td>
</tr>
<tr>
<td>Number of data points</td>
<td>21</td>
</tr>
<tr>
<td>Data sources</td>
<td>Karlsson et al. (2007)</td>
</tr>
<tr>
<td>Time period</td>
<td>Growing season</td>
</tr>
<tr>
<td>Response function</td>
<td>Based on annual reduction in total tree biomass</td>
</tr>
<tr>
<td>r^2</td>
<td>0.62</td>
</tr>
<tr>
<td>P value</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Calculating exceedance of the AOT40-based critical level

The method described in Section III.3.7.2 of the Modelling and Mapping Manual should be followed incorporating the following recommendations specific for forest trees:

Step 1: The default exposure window for the accumulation of AOT40 is suggested to be 1 April to 30 September for all deciduous and evergreen species in all regions throughout Europe. This time period does not take altitudinal variation into account and should be viewed as indicative only. It should be stressed that it should only be used where local information is not available. When developing local exposure windows, the following definitions should be used:

- Onset of growing season in deciduous species: the time at which flushing has initiated throughout the entire depth of crown.
- Cessation of growing season in deciduous species: the time at which the first indication of autumn colour change is apparent.
- Onset of growing season in evergreen species: when the night temperatures are above -4°C for 5 days: if they do not fall below -4°C, the exposure window is continuous.
- Cessation of growing season in evergreen species: when the night temperatures are below -4°C for 5 days: if they do not fall below -4°C, the exposure window is continuous.

Steps 2 and 3: It is important that the calculation of AOT40 is based on O_3 concentrations at the top of the canopy as described in Section III.4.2. The suggested default canopy height for forest trees is 20m.

Step 4: Continue as described in Section III.3.7.2 in the Modelling and Mapping Manual.
7.4 (Semi-)natural vegetation

Scientific background and AOT40-based critical levels

The critical levels for (semi-)natural vegetation (Table 7.6) are applicable to all sensitive semi-natural vegetation and natural vegetation, excluding forest trees and woodlands, described here collectively as (semi-)natural vegetation. Two AOT40-based critical levels were agreed at the Obergurgl (2005) workshop.

Table 7.6
Summary of AOT40-based critical levels for (semi-)natural vegetation.

<table>
<thead>
<tr>
<th>(Semi-) natural vegetation dominated by:</th>
<th>Critical level</th>
<th>Time period</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annuals</td>
<td>An AOT40 of 3 ppm h</td>
<td>3 months (or growing season, if shorter)</td>
<td>Growth reduction and/or seed production reduction in annual species</td>
</tr>
<tr>
<td>Perennials</td>
<td>An AOT40 of 5 ppm h</td>
<td>6 months</td>
<td>Effects on total above-ground or below-ground biomass and/or on the cover of individual species and/or on accelerated senescence of dominant species</td>
</tr>
</tbody>
</table>

Critical level for effects on communities of (semi-)natural vegetation dominated by annuals

The criteria for adverse effects on (semi-)natural vegetation communities dominated by annuals are effects on growth and seed production for annual species. This critical level is based on statistically significant effects or growth reductions of greater than 10% on sensitive taxa of grassland and field margin communities. The value of 3 ppm h is sufficient to protect the most sensitive annuals. In contrast to crops and tree species, only limited experimental data are available for a small proportion of the vast range of species found across Europe. This means that analysis of exposure-response data for individual species to derive a critical level value is more difficult. Instead, the recommended critical level is based on data from a limited number of sensitive species. The value of 3 ppm h was originally proposed at the Kuopio workshop (Kärenlampi & Skärby, 1996) and confirmed at the Gerzensee workshop (Fuhrer & Achermann, 1999) and subsequently at the Obergurgl workshop (Wieser and Tausz, 2006). At the time of the Kuopio workshop, no exposure-response studies were available for derivation of a critical level for (semi-)natural vegetation, based on a 10% response. Instead, data from field-based experiments with control and O₃ treatments were used to identify studies showing significant effects at relatively low O₃ exposures. **Table 7.7** summarises the key field chamber and field fumigation experiments which supported the original proposal of this critical level for (semi-)natural vegetation.

A number of studies have clearly demonstrated that the effects of O₃ in species mixtures may be greater than those on species grown alone or only subject to intraspecific competition. Therefore, the critical level needs to take into account the possibility of effects of interspecific competition in reducing the threshold for significant effects; indeed three of the four experiments listed in Table 7.6 include such competitive effects. By the time of the Gothenburg workshop (2002), the most comprehensive study of O₃ effects on species mixtures involving species which are representative of different communities across Europe, is the EU-FP5 BIOSTRESS (BIOdiversity in Herbaceous Semi-Natural Ecosystems Under STRESS by Global Change Components) programme. Results to date from the BIOSTRESS programme, including experiments with species from the Mediterranean dehesa community, indicate that exposures to O₃ exceeding an AOT40 of around 3 ppm h may cause significant negative effects on annual and perennial plant species (see Fuhrer et al., 2003). The BIOSTRESS mesocosm experiments with two-species mixtures indicated
that exposures during only 4-6 weeks early in the growing season may cause shifts in species balance. The effect of this early stress may last for the rest of the growing season.

Table 7.7
Summary of key experiments supporting the critical level of 3 ppm h (now adopted for communities dominated by annuals), as proposed at the Kuopio workshop (Ashmore & Davison, 1996).

<table>
<thead>
<tr>
<th>Species or community</th>
<th>Most sensitive species</th>
<th>AOT40 (ppm h)</th>
<th>Response</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual plants</td>
<td>Solanum nigrum</td>
<td>4.2</td>
<td>-23%; shoot mass -54%; seed mass</td>
<td>Bergmann et al., 1996</td>
</tr>
<tr>
<td></td>
<td>Malva sylvestris</td>
<td>3.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesocosms of four species</td>
<td>Trifolium repens</td>
<td>5.0</td>
<td>-13%; shoot mass</td>
<td>Ashmore & Ainsworth, 1995</td>
</tr>
<tr>
<td>Mesocosms of seven species</td>
<td>Festuca ovina</td>
<td>7.0</td>
<td>-32%; shoot mass -22%; shoot mass</td>
<td>Ashmore et al., 1996</td>
</tr>
<tr>
<td></td>
<td>Leontodon hispidus</td>
<td>7.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ryegrass-clover sward</td>
<td>Trifolium repens</td>
<td>5.0</td>
<td>-20%; shoot mass</td>
<td>Nussbaum et al., 1995</td>
</tr>
</tbody>
</table>

The key experiments from the BIOSTRESS programme, which support the proposed critical level for communities dominated by annual species, are summarised in Table 7.8. Taken together, these studies support a critical level in the range 2.5-4.5 ppm h, with a mean value of 3.3 ppm h.

The value of the critical level for communities dominated by annuals is further supported by other published data, for instance, for wetland species by Power and Ashmore (2002) and Franzaring et al. (2000) and for dehesa pastures by Sanz et al. (2016). In individual plants from wild strawberry populations growing at high latitudes, Manninen et al. (2003) observed a significant biomass decline of >10% at 5 ppm h from June-August.

Table 7.8
Summary of experiments from the BIOSTRESS programme which support the recommended critical level for communities dominated by annuals (reviewed by Fuhrer et al., 2003).

<table>
<thead>
<tr>
<th>Responsive species</th>
<th>Competitor species</th>
<th>Variable showing significant response</th>
<th>Corresponding AOT40</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trifolium pratense</td>
<td>Poa pratensis</td>
<td>Biomass (-10%)</td>
<td>4.4 ppm h*</td>
<td>Gillespie & Barnes, unpublished data</td>
</tr>
<tr>
<td>Veronica chamaedrys</td>
<td>Poa pratensis</td>
<td>Species biomass ratio</td>
<td>3.6 ppm h</td>
<td>Bender et al. (2002)</td>
</tr>
<tr>
<td>Trifolium cherleri, T. striatum</td>
<td>Briza maxima</td>
<td>Flower production</td>
<td>2.2-2.7 ppm h</td>
<td>Gimeno et al. (2003); Gimeno et al. (2004).</td>
</tr>
<tr>
<td>Trifolium cherleri</td>
<td>Briza maxima</td>
<td>Seed output</td>
<td>2.4 ppm h</td>
<td>Gimeno et al. (2004)</td>
</tr>
</tbody>
</table>

* Estimated from exposure-response functions

Critical level for effects on communities dominated by perennial species

A critical level of an AOT40 of 5 ppm h over 6 months to prevent adverse effects in communities dominated by perennial species was recommended at the Obergurgl workshop (2005). Since this critical level is based on average AOT40 values in experiments with a duration of several years, mapping of exceedance of this critical level should be based on 5-year mean values of AOT40.
Table 7.9 Key findings of the studies used to establish the new critical level.

<table>
<thead>
<tr>
<th>Location and community</th>
<th>Duration and AOT40 in control (C) and lowest effect treatment (T)</th>
<th>Biomass data</th>
<th>Species response</th>
</tr>
</thead>
</table>
| Southern Finland\(^1\)
Dry grassland (7 species) in open-top chambers | 3 years
1.7 ppm h (C)
8.5 ppm h (T)
3 months fumigation in summer of each year | 40% and 34% reduction in above- and below-ground biomass, respectively; reduced N availability | 64% reduction in biomass of *Campanula rotundifolia*;
61% reduction in biomass of *Vicia cracca* |
| Wales\(^2\)
Upland grassland (7 species) in solardomes | 2 years
0 ppm h (C)
10, 12, 30 ppm h (T)
3 months fumigation each summer presented as current or 2050 background with/without episodic peaks | Significant increase in community senescence detected in 10 ppm h treatment;
7% reduction in cumulative above-ground community biomass in 30 ppm h treatment | Significant increase in senescence for *Festuca ovina* and *Potentilla erecta* at 10 ppm h;
15% reduction in *Anthoxanthum odoratum* biomass within the community at 30 ppm h |
| Northern England\(^3\)
Upland grassland Species-rich (11 species), in open-top chambers | 18 months
3 ppm h (C).
10 ppm h (T)
6 months exposure during ‘summer’ to 50 ppb versus 30 ppb reducing to 35 ppb versus 20 ppb over ‘winter’ | 16% reduction in total above-ground biomass | Significant reduction in biomass of *Briza media* and *Phleum bertolonii* |
| Southern England\(^4\)
Calcareous grassland (38 species) in open-top chambers | 3 years
2.6 ppm h (C)
10.5, 13.3, 18.2 ppm h (T)
Exposure for periods of 3-5 months each year at three levels of O\(_3\), effects observed at lowest exposure | No significant effect on above-ground biomass | Significant change in community composition; loss of *Campanula rotundifolia* |

Sources of data: 1 Rämö et al. (2006); 2 Mills et al. (2006); 3 Barnes & Samuelsson, quoted in Bassin et al. (2007); 4 Thwaites et al. (2006).

Note: (C) indicates AOT40 exposure in control treatment; (T) indicates AOT40 exposure in O\(_3\) treatments. The AOT40 values above were calculated over a six-month period, even though the experimental period was in some cases shorter. For studies in which the fumigation period was less than six months, exposure outside the experimental period was added to both the control and treatment AOT40.

This new critical level is based on five studies that provide important new experimental evidence for the effects of O\(_3\) on plant communities dominated by perennial species, in chamber and field fumigation studies. Four studies involved mesocosms established from seed, from plants taken from the field, or by transplanting communities from the field, while one study involved exposure to O\(_3\) in situ. Because of the longer growth period of these communities, the AOT40 should be calculated over a six-month growth period. The response variables of perennial dominated communities include significant effects on total above-ground or below-ground biomass, on the cover of individual species and on accelerated senescence of dominant species. Table 7.9 summarises the key findings of the studies which were used to establish the new critical level.
Calculating exceedance of the AOT40-based critical level

Follow the procedure outlined in Section III.3.7.2 of the Modelling and Mapping Manual using the following recommendations specific to (semi-)natural vegetation:

Step 1: Determine the accumulation period

Ideally, a variable time-window should be used in the mapping procedure to account for different growth periods of annuals and perennials in different regions of Europe. The AOT40 is calculated over the first three or six months of the growing season. The start of the growing season can be identified using:

1. Appropriate phenological models;
2. Information from local or national experts;
3. The default table below (Table 7.10).

For some species, the most relevant period of the growing season for O₃ effects may be less than three months in duration. In such cases, values of AOT40 should be calculated over the growing season, identified using appropriate local information.

Table 7.10 Default timing for the start and end of O₃ exposure windows for (semi-)natural vegetation. (Note: regional classifications of countries are suggested in Table 7.2.

<table>
<thead>
<tr>
<th>Region</th>
<th>Start date</th>
<th>End date (annual-dominated communities)</th>
<th>End date (perennial-dominated communities)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eastern Mediterranean*</td>
<td>1 March</td>
<td>31 May</td>
<td>31 Aug</td>
</tr>
<tr>
<td>Western Mediterranean*</td>
<td>1 March</td>
<td>31 May</td>
<td>31 Aug</td>
</tr>
<tr>
<td>Continental Central Europe</td>
<td>1 April</td>
<td>30 June</td>
<td>30 Sept</td>
</tr>
<tr>
<td>Atlantic Central Europe</td>
<td>1 April</td>
<td>30 June</td>
<td>30 Sept</td>
</tr>
<tr>
<td>Northern Europe</td>
<td>mid-April</td>
<td>mid-July</td>
<td>mid-October</td>
</tr>
</tbody>
</table>

* For mountain areas where the altitude is above 1500 m, use a start date of 1 April, with end dates of 30 June for annual-dominated communities and 30 September for perennial-dominated communities.

Steps 2 and 3: Determine the O₃ concentration at the top of the canopy

The AOT40 value should be calculated as the concentration at canopy height, using the information provided in Section III.3.4.2 of the Modelling and Mapping Manual and chapter 3 of this document. The transfer functions to make this calculation, based on deposition models, depend on a number of factors which may vary systematically between vegetation classes. These include canopy height and leaf area index (both natural variation and effects of management) and environmental variables such as vapour pressure deficit and soil moisture deficit. If such information is not available, it is recommended that the conversion factors for short grasslands are used as a default.

Steps 3 – 4: continue as indicated in III.3.7.2.

7.5 References

Baumgarten, M., Werner, H., Häberle, K.H., Emberson, L., Fabian, P. & Matyssek, R. (2000). Seasonal ozone exposure of mature beech trees (Fagus sylvatica) at high altitude in the Bavarian forest (Germany) in comparison with young beech grown in the field and in phytotrons. Environmental Pollution 109, 431-442.

UNEPCE. (1996). Manual on methodologies and criteria for mapping critical levels/loads and geographical areas where they are exceeded. Texte 71/96, Umweltbundesamt, Berlin, Germany.

55