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Executive summary 

Increased ratification of the Protocols of the Convention on Long-range Transboundary Air Pollution 

(LRTAP) was identified as a high priority in the new long-term strategy of the Convention. Increased 

ratification and full implementation of air pollution abatement policies is particularly desirable for 

countries of Eastern Europe, the Caucasus and Central Asia (EECCA) and South-Eastern Europe 

(SEE). Hence, scientific activities within the Convention will need to involve these countries. In the 

current report, the ICP Vegetation has reviewed current knowledge on the deposition of air pollutants 

to and their impacts on vegetation in EECCA (Armenia, Azerbaijan, Belarus, Georgia, Kazakhstan, 

Kyrgyzstan, Moldova, Russian Federation, Tajikistan, Turkmenistan, Ukraine and Uzbekistan) and 

SEE countries (Albania, Bosnia and Herzegovina, Bulgaria, Croatia, Cyprus, Greece, Macedonia, 

Montenegro, Romania, Serbia, Slovenia and Turkey). As an outreach activity to Asia we have also 

reviewed current knowledge on this subject for the Malé Declaration countries in South-East Asia 

(SEA; Bangladesh, Bhutan, India, Iran, Maldives, Nepal, Pakistan and Sri Lanka). Air pollution is a 

main concern in Asia due to enhanced industrialisation, which is directly linked to continued strong 

economic growth in recent decades. 

In these regions, there is generally a lack of an extensive network of monitoring stations to assess the 

magnitude of air concentrations and depositions of pollutants. In addition, emission inventories are 

often incomplete or not reported at all for some pollutants, which makes it difficult to validate 

atmospheric transport models for these regions. Furthermore, there is often a lack of coordinated 

monitoring networks to assess the impacts of air pollution on vegetation. Hence, the risk of adverse 

impacts on vegetation often has to be assessed using atmospheric transport models in conjunction 

with metrics developed to compute the risk of air pollution impacts on vegetation, such as critical 

loads and levels. Here we have focussed on the following air pollutants: nitrogen, ozone, heavy 

metals, POPs (EECCA/SEE countries) and aerosols, including black carbon as a component (South-

East Asia). 

Nitrogen 
Critical load exceedances for nutrient nitrogen are only available for a limited number of EECCA 

countries. Compared with Western and Central Europe, available computed critical load exceedances 

for nitrogen have historically been lower in SEE and large areas of the EECCA region, particularly the 

northern part, and this was also the case in 2010. However, the critical load is expected to still be 

exceeded in large areas in 2020 with improvements since 2005 generally being lower than in Western 

and Central Europe, particularly in the EECCA region. Nitrogen concentrations in mosses were found 

to be intermediate to high in SEE compared to other European countries, indicating potentially a 

higher risk of nitrogen effects on ecosystems than computed by the critical loads. Little data is 

available on nitrogen deposition and impacts on vegetation in South-East Asia. 

Ozone 

For the first time, the ICP Vegetation has mapped the risk of adverse impacts of ozone on vegetation 

for the extended EMEP domain using the flux-based metric PODY
2
. The concentration-based 

approach (AOT40
3
) identifies the southern part of the EECCA region at highest risk, whereas the 

biologically more relevant flux-based approach (PODY) identifies the south-western part of the region 

bordering with Central Europe at highest risk. Both approaches indicate that the northern part of the 

region is at lowest risk of adverse impacts from ozone pollution. Field-based evidence is available for 

ozone impacts on crops in Greece and Slovenia, with many crop species showing visible leaf injury in 

Greece. Both AOT40 and PODY are computed to be high in SEE, indicating that this area is at high 

risk of ozone damage to vegetation. Staple food crops (maize, rice, soybean and wheat) are sensitive 

to moderately sensitive to ozone, threatening global food security. Recent flux-based risk assessment 

of ozone-induced wheat yield loss show that the estimated relative yield loss was 6.4-14.9% for China 

and 8.2-22.3% for India in 2000, with higher yield losses predicted for 2020, indicating the urgent 

                                                           
2
 Phytotoxic ozone dose above a flux threshold of Y nmol m

-2
 projected leaf area s

-1 
3
 The accumulated hourly mean ozone concentration above 40 ppb, during daylight hours 
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need for curbing the rapid increase in surface ozone concentrations in this region. Worryingly, yield 

reductions of 20-35% have been recorded for various crop species when comparing yield in clean air 

with that in current ambient ozone concentrations in South-East Asia. 

Heavy metals 
Generally, deposition of heavy metals has declined in recent decades in EECCA and SEE countries, 

in agreement with the general decline computed for the rest of Europe, with the highest decline being 

reported for lead. However, apart from the western part of the EECCA region, the decline has 

generally been lower for EECCA and SEE countries compared to the rest of Europe. In 2011, the 

highest levels of metal deposition were computed in SEE countries, the south-western part and some 

(south-)eastern parts of the EECCA region. This might explain the relatively high concentrations of 

many heavy metals in mosses in countries in SEE Europe compared to the rest of Europe in recent 

years. High critical load exceedances have been reported for Macedonia for cadmium and lead and 

for Bosnia-Herzegovina and Russian Federation for lead. Widespread exceedance of the critical load 

for mercury has been observed in this region, similar to the rest of Europe. In India, the deposition of 

many heavy metals onto fruit and vegetables has been found to exceed WHO and Indian national 

limits for safe consumption.  

Persistent organic pollutants (POPs) 
Model assessment indicate a reduction of POP pollution in most of the EECCA and SEE countries 

between 1990 to 2011, particularly for hexachlorobenzene (HCB), although generally lower than for 

the rest of Europe; highest reductions were observed in the western part of the region. In 2011, the 

highest deposition for benzo[a]pyrene and polychlorinated dibenzodioxin were computed in the south-

western part of the region, whereas HCB levels were high for large parts of the Russian Federation. 

Aerosols 
South Asia is a region with high aerosol load compared to other regions, due its rapid growth and the 

arid climate. In particular the Indo-Gangetic Plain, South Asia’s most important agricultural region, 

persistently has very high aerosol load, reducing visibility as well as solar radiation reaching the 

surface. Reduced photosynthesis might occur as a result of reduced solar radiation and larger 

aerosols blocking leaf pores, although the increase in diffuse radiation might have the opposite effect. 

Conclusions and recommendations 
This review highlights the lack of monitoring data regarding the deposition to and impacts of air 

pollutants on vegetation in EECCA/SEE countries and South-East Asia. It would be desirable to 

further enlarge coordinated networks to measure air concentrations and depositions of air pollutants, 

i.e. to extend the EMEP monitoring network in the EECCA/SEE region and establish a similar network 

in South-East Asia, for example by extending the Acid Deposition Monitoring Network in East Asia 

(EANET) by including other regions and more pollutants. International Cooperative Programmes of 

the LRTAP Convention might consider further stimulating the development of coordinated networks in 

these regions with the aim to establish widespread monitoring networks assessing the impacts of air 

pollutants on ecosystems. More measurement data are urgently needed to validate model outputs 

regarding the concentrations, deposition and associated risk for impacts of air pollutants on 

vegetation. The successful implementation of air pollution abatement policies in many other parts of 

Europe has highlighted the slower progress made with some of the air pollution abatement in the 

Eastern Europe, the Caucasus, Central and South-East Asia. Improvement of air quality in these 

regions will also benefit the rest of Europe due to a reduction on long-range transport of air pollutants, 

particularly those of hemispheric nature such as ozone and mercury. Many air pollution issues are 

remaining in the studied areas that require urgent attention, especially in regions of fast economic and 

population growth, ensuring future sustainable development without significant impacts on the 

functionality of ecosystems, the services they provide and food production.   
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1. Introduction 

Harry Harmens, Gina Mills 

1.1 Background 

Since being established in 1979, the Convention on Long-range Transboundary Air Pollution (LRTAP) 

has delivered demonstrable improvements in air quality resulting in, for example, reduced acidification 

of the environment, reductions in the highest peak levels of ozone and photochemical smog, and 

reductions in atmospheric heavy metal concentration and deposition. The LRTAP Convention has 

also begun to make improvements in atmospheric levels and deposition of nitrogen. Despite such 

good progress, air pollution in the UNECE region still causes significant environmental and health 

problems and new problems are emerging. Major strenghts and successes of the Convention are:  

 Science-based policy decision making and the effects-oriented approach;  

 Its geographical coverage of most of the northern hemisphere;  

 The multi-pollutant/multi-effects approach of the Gothenburg Protocol on acidification, 

eutrophication (primarily nitrogen enrichment) and ground-level ozone, established in 1999;  

 Establishment of the Protocols on Persistent Organic Pollutants (POPs) and on Heavy Metals in 

1998, leading the way for a wider global approach to these problems, i.e. development of the 

Stockholm Convention on POPs and Minamata Convention on Mercury.  

In 2010, the Convention adopted its long-term strategy for the next 10 years (EB Decision 2010/18). 

The strategy identified remaining challenges facing the UNECE region and emphasised that the focus 

of the work of the Convention should be on ozone, nitrogen and particulate matter, the latter primarily 

in relation to adverse impacts on human health. The Convention will pursue initiatives in addressing 

the synergies and trade-offs between policies to address air pollution, climate change and 

biodiversity. For example, there is a growing interest in the so-called short-lived climate forcers 

(SLCFs) as a potential means of mitigating short-term climate change before the effects of the longer-

lived greenhouse gases are seen. SLCFs such as black carbon (a component of particulate matter) 

and ozone are being addressed in the revision of the Gothenburg Protocol, adopted in 2012. 

Increased ratification of the Protocol on Heavy Metals, the Protocol on POPs and the Gothenburg 

Protocol was identified as a high priority in the new long-term strategy of the Convention. A viable 

future for the Convention depends on positive and vigorous participation by the Parties in all parts of 

the region, and on ensuring its extensive geographical coverage. Increased ratification and full 

implementation of air pollution abatement policies is particularly desirable for countries of Eastern 

Europe, the Caucasus and Central Asia (EECCA) and South-Eastern Europe (SEE). Hence, scientific 

activities within the Convention will need to involve these countries. In the current report, the ICP 

Vegetation has reviewed the knowledge on the deposition of air pollutants and their impacts on 

vegetation in EECCA (Armenia, Azerbaijan, Belarus, Georgia, Kazakhstan, Kyrgyzstan, Moldova, 

Russian Federation, Tajikistan, Turkmenistan, Ukraine and Uzbekistan) and SEE countries (Albania, 

Bosnia and Herzegovina, Bulgaria, Croatia, Cyprus, Greece, Macedonia, Montenegro, Romania, 

Serbia, Slovenia and Turkey). As an outreach activity to Asia we have also reviewed the current 

knowledge on this subject for the Malé Declaration countries in South-East Asia (Bangladesh, Bhutan, 

India, Iran, Maldives, Nepal, Pakistan and Sri Lanka). 

1.2 ICP Vegetation 

The International Cooperative Programme on Effects of Air Pollution on Natural Vegetation and Crops 

(ICP Vegetation) was established in 1987, initially with the aim to assess the impacts of air pollutants 

on crops, but in later years also on (semi-)natural vegetation. The ICP Vegetation is led by the UK 

and has its Programme Coordination Centre at the Centre for Ecology and Hydrology (CEH) in 

Bangor. The ICP Vegetation is one of seven ICPs and Task Forces that report to the Working Group 

on Effects (WGE) of the Convention on Long-range Transboundary Air Pollution (LRTAP Convention) 

on the effects of atmospheric pollutants on different components of the environment (e.g. forests, 
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fresh waters, materials) and health in Europe and North-America. The ICP Vegetation comprises an 

enthusiastic group of scientists from more than 40 countries (Harmens et al., 2013b), including 

scientists from outside the UNECE region as the ICP Vegetation stimulates outreach activities to 

other regions in the world. Table 1.1 provides an overview of EECCA, SEE and Asian countries 

currently participating in the ICP Vegetation. 

 

Table 1.1  EECCA, SEE
a
 and Asian countries participating in the ICP Vegetation. Within brackets: 

pollutant(s) studied in the country. 
 

 
a
 Kosovo (United Nations administered territory, Security Council resolution 1244 (1999)) also participates (HM). 

HM = moss survey on heavy metals; N = moss survey on nitrogen; O3 = ozone; POPs = moss survey on POPs. 

 

Historically, the ICP Vegetation has focussed on the impacts of ozone pollution on vegetation. In 

recent years, the ICP Vegetation has reported on the widespread occurrence of ozone damage to 

vegetation (Hayes et al., 2007; Mills et al., 2011a), the threat of ozone pollution to food security (Mills 

and Harmens, 2011), impacts of ozone on the carbon sequestration in the living biomass of trees 

(Harmens and Mills, 2012), and impacts of ozone on ecosystem services and biodiversity (Mills et al., 

2013). Furthermore, the ICP Vegetation has been instrumental in developing the methodology for 

establishing ozone critical levels for vegetation (Mills et al., 2011b; LRTAP Convention, 2011). The 

ICP Vegetation is also studying the interactive impacts of ozone and nitrogen on vegetation and the 

impacts of ozone on vegetation in a future climate (Vandermeiren et al., 2009). Participation from 

EECCA and SEE countries in the ozone work of the ICP Vegetation is very limited (Table 1.1). 

Since 2000/1, the ICP Vegetation has conducted the European moss survey on heavy metals. It 

involves the collection of naturally-occurring mosses and determination of their heavy metal 

concentration at five-year intervals. European surveys have taken place every five years since 1990, 

and the latest survey was conducted in 2010/11. Mosses were collected at thousands of sites across 

Europe and their heavy metal (since 1990; Harmens et al., 2010, 2013c), nitrogen (since 2005; 

Harmens et al., 2011, 2013c) and POPs concentration (pilot study in 2010; see Harmens et al., 

2013b) were determined. Participation from a limited number of EECCA countries mainly concerns 

the European moss survey on heavy metals, whereas participation in the moss survey in SEE 

countries is more widespread and also included nitrogen in a limited number of countries (Table 1.1). 

1.3 Aim and structure of the report 

In this report we review the current knowledge on the deposition of air pollutants to and their impacts 

on vegetation in EECCA and SEE countries (Chapter 2) and South-East Asia (Chapter 3). Knowledge 

is presented for the pollutants nitrogen, ozone, heavy metals, POPs and aerosols including black 

carbon (South-East Asia only). Conclusions and recommendations are presented in Chapter 4. Some 

countries have provided a country report and these are included in Annex 1; the annex also contains 

a country report submitted by Egypt.  

EECCA SEE Asia 

Belarus (HM) Albania (HM) China (O3) 

Russian Federation (HM) Bulgaria (HM, N) India (HM, O3) 

Ukraine (HM, O3) Croatia (HM, N, O3) Japan (O3) 

 
Greece (O3) Pakistan (O3) 

 
Macedonia (HM, N) 

 

 
Romania (HM) 

 

 
Serbia (HM) 

 

 
Slovenia (HM, N, O3, POPs) 

 
  Turkey (HM, N)   

 



9 
 

2. Air pollution deposition and impacts on vegetation in EECCA 

and SEE 

Harry Harmens, Gina Mills, Katrina Sharps, with contributions from Max Posch, Jaap Slootweg, Jean-

Paul Hettelingh, Ilia Ilyin, Michael Gauss, Anna Benedictow 

2.1 Introduction 

Each year EMEP (European Monitoring and Evaluation Programme; http://www.emep.int) provides 

scientific information on transboundary air pollution fluxes inside the EMEP area, relying on 

information on emission sources and monitoring results provided by the Parties to the LRTAP 

Convention. EMEP consists of three main elements: (1) collection of emission data, (2) 

measurements of air and precipitation quality and (3) modelling of atmospheric transport and 

deposition of air pollutions. Officially submitted emission data by Parties to the Convention are used 

as input to atmospheric chemistry and transport models developed by EMEP. The Meteorological 

Synthesizing Centre - West (MSC-W) is responsible for the modelling assessment of sulphur, 

nitrogen, photo-oxidant pollutants and atmospheric particles. The modelling development for heavy 

metals and POPs is the responsibility of the Meteorological Synthesizing Centre - East (MSC-E). The 

performance of the models is evaluated through field-based measurements of air concentrations and 

deposition within the EMEP monitoring network.  

 

 

Figure 2.1  EMEP monitoring network for acidifying, eutrophying compounds and particulate matter (PM; 

top left; excluding ozone only measurements sites), ozone (top right), heavy metals (bottom, 
left; note: Cyprus is misplaced in the map to fit inside the map) and persistent organic 
pollutants (POPs; bottom, right) operational in 2011. Sources: Hjellbrekke and Fjæraa (2013); 
Hjellbrekke et al. (2013); Aas and Breivik (2013). 

 

Acidifying, eutrophying, PM Ozone 

Heavy metals POPs  
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Figure 2.1 and Table 2.1 provide an overview of the EMEP measurement sites in operation in 2011. 

Not all sites measure all pollutants and the number of monitoring sites is limited, particularly in 

EECCA but also SEE countries compared to the rest of Europe. For heavy metals, 68 sites were 

measuring cadmium and/or lead concentrations in air, precipitation or both in 2011, of which only half 

were measuring one form mercury (Aas and Breivik, 2013). 

Table 2.1 EMEP monitoring sites operational in 2011 in EECCA and SEE countries, the components 

measured at each site are indicated. 

 
* Acidifying (A), eutrophying (E) compounds and particulate matter (PM); X

Hg
: also measuring mercury (Hg). 

 

The Working Group on Effects (http://www.unece.org/env/lrtap/workinggroups/wge/welcome.html) 

provides scientific support to the LRTAP Convention by developing dose-response relationships for 

effects of air pollutants on ecosystems, human health and materials. Based on these relationships, 

critical loads and levels are calculated to protect the environment and human health from adverse 

impacts of air pollutants (LRTAP Convention, 2011). A critical load or level is defined as a quantitative 

estimate of an exposure to one or more pollutants below which significant harmful effects on specified 

sensitive elements of the environment do not occur according to present knowledge (Nilsson and 

Grennfelt, 1988). The main objective of EMEP and WGE is to provide governments and subsidiary 

bodies under the LRTAP Convention with scientific information to support the development and 

further evaluation of the international protocols on emission reductions negotiated within the 

Convention. In the following sections we will describe the deposition of air pollutants to and impacts 

on terrestrial ecosystems for nitrogen (N), ozone (O3), heavy metals and POPs. 

2.2 Nitrogen 

2.2.1 Background 

Nearly 80% of the earth’s atmosphere is made up of di-nitrogen (N2). Whereas N2 is unreactive and 

cannot be assimilated by most organisms, many reactive nitrogen (Nr) forms are essential for life, but 

are naturally in short supply. These include ammonia, nitrates, amino acids, proteins and many other 

forms (Sutton et al., 2011). At the start of the twentieth century, several industrial processes were 

developed to fix N2 into Nr. Since the 1950s, the production of Nr has greatly increased to meet the 

demand for fertilizer to feed the world’s growing population as well as industrial and other needs for 

Nr. Emission sources of reduced forms of N are primarily related to agricultural activities such as 

animal husbandry (manure) and the application and production of fertilizers. The main anthropogenic 

sources for oxidised forms of N are combustion processes in transport, industry and energy 

Country Station Latitude Longitude A&E compounds & PM* Ozone Heavy metals POPs

EECCA

Armenia Amberd 40 23   4 N 44 15 38 E X X

Belarus Vysokoe 52 20   0 N 23 26   0 E X

Georgia Abastumani 41 45 18 N 42 49 31 E X

Moldova Leova II 46 29 18 N 28 17   0 E X

Russian Federation Janiskoski 68 56   0 N 28 51   0 E X

Russian Federation Pinega 64 42   0 N 43 24   0 E X

Russian Federation Danki 54 54   0 N 37 48   0 E X

Russian Federation Lesnoy 56 31 48 N 32 56 24 E X

SEE country

Bulgaria Rojen peak 41 41 45 N 24 44 19 E X

Croatia Puntijarka 45 54   0 N 15 58   0 E X

Croatia Zavizan 44 49   0 N 14 59   0 E X

Cyprus Ayia Marina 35   2 20 N 33   3 29 E X X XHg
X

Greece Aliartos 38 22   0 N 23   5   0 E X

Greece Finokalia 35 19   0 N 25 40   0 E X

Macedonia Lazaropole 41 19 12 N 20 25 12 E X X

Montenegro Zabljak 43   9   0 N 19   8   0 E X

Romania Poiana Stampei 47 19 29 N 25   8   4 E X X X

Serbia Kamenicki vis 43 24   0 N 21 57   0 E X X

Slovenia Iskrba 45 34   0 N 14 52   0 E X X XHg
X

Slovenia Zarodnje 46 25 43 N 15   0 12 E X

Slovenia Krvavec 46 17 58 N 14 32 19 E X X

Slovenia Kovk 46   7 43 N 15   6 50 E X



11 
 

production (up to 70% of oxidised N emissions). Oxidised N forms also contribute to the formation of 

ozone (O3). However, Nr is a key societal threat to the environment, with adverse effects on water 

quality, air quality, greenhouse balance, ecosystems and biodiversity, and soil quality. Cost-benefit 

analysis highlights how the overall environmental costs of all Nr losses in Europe (70 – 320 billion 

Euros per year) outweigh the direct economic benefits of Nr in agriculture (Sutton et al., 2011).  

2.2.2 Nitrogen critical load exceedances 

Nr has been identified as one of the major drivers of biodiversity loss in Europe, in particular for 

vegetation diversity. Impacts on vegetation diversity are through direct foliar damage, eutrophication 

(N enrichment), acidification, and susceptibility to secondary stress (Dise et al., 2011). Evidence is 

strong that plant communities respond to the accumulated pool of plant-available N in the soil, 

therefore, the cumulative load of N to ecosystems is probably highly important. European emission 

controls for sulphur and N are based on the critical loads concept, an effects-based approach 

(Spranger et al., 2008; Bobbink and Hettelingh, 2011; LRTAP Convention, 2004; Reinds et al., 2008).  

 
Figure 2.2  Areas in Eastern Europe where critical loads for eutrophication are exceeded by nutrient 

nitrogen deposition in 1990 (left) and 2010 (right). Note: The 1990 map is on the EMEP 50 km 
× 50 km

 
grid whereas the 2010 map is on the 0.5 × 0.25 degree longitude – latitude grid using 

the latest EMEP model output; the critical loads are from the 2011/12 data base. Source: 
Coordination Centre for Effects, RIVM, Bilthoven, The Netherlands. 

Although implementation of air pollution abatement policies developed under the LRTAP Convention 

have resulted in a decline of the exceedance of N critical loads across Europe since 1980, terrestrial 

N enrichment continues to be a serious threat to European ecosystems (Hettelingh et al., 2012; 

Working Group on Effects, 2013a). Areas most at risk in recent decades were those in Western and 

Central Europe, and those predicted to be most at risk in 2020 are parts of the Netherlands and West-

France (Hettelingh et al., 2012). Figure 2.2 shows the areas at risk of eutrophication in 1990 and 

2010 for EECCA and SEE countries for which data were available. The magnitude of exceedance has 

clearly declined in the last two decades, with areas at highest risk in 1990 being areas in the central 

part of the region and those nearest to Central Europe. The area on the border with Central Europe 

still showed the highest exceedances in 2020. The recently updated Guidance Document on Health 

and Environmental Improvements (Working Group on Effects, 2013b) reflects the commitments of the 

Revised Gothenburg Protocol to include 2005 as the base year for emission reductions reporting and 

2020 emission reduction commitments. For EECCA countries, the Guidance Document only contains 

information for Belarus, Moldova, Russian Federation and Ukraine. The 2020 emission reduction 

commitments for Belarus, Moldova and Ukraine will not result in a change in the percentage of area 

where critical loads of N are exceededed in 2020 compared to 2005, i.e. the area of exceedance will 

remain 100% (Table 2.2), but the average accumulated exceedance (AAE; Posch et al., 2001), an 

indication of the magnitude of exceedance, will be reduced by 14 (Belarus) to 24% (Moldova).  

In the Russian Federation, the percentage area of exceedance will decline from 48% in 2005 to 40% 

in 2020, with AAE being reduced by 33%. The predicted improvements of AAE in the EECCA 
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countries are relatively low compared to those in SEE countries (apart from Cyprus and Albania) and 

those in countries in other parts of Europe (Table 2.2; Working Group on Effects, 2013b). Although 

large areas in Europe are predicted to still exceed the N critical loads in 2020 under the current 

Gothenburg Protocol emission reduction commitments, the magnitude of exceedance as indicated by 

the AAE will be much lower. Hence, eutrophication will remain a threat to ecosystems in the near 

future, preventing recovery of ecosystems from higher N deposition in recent decades. 

Table 2.2  Percentage area per country where critical loads for eutrophication of ecosystems are 

exceeded and average accumulated exceedance (AAE) in those areas for the base year 2005 
and the 2020 emission reduction commitments of the revised Gothenburg Protocol. The 
percentage improvement between 2005 and 2020 is also shown. Source: Working Group on 
Effects (2013b). Guidance document for Health and Environmental Improvements. 

 

2.2.3 Nitrogen concentrations in mosses 

Several studies have shown that mosses have the potential to be indicators of atmospheric N 

deposition (Harmens et al., 2011, and references therein). However, sometimes the relationship 

between atmospheric N deposition and the N concentration in mosses is weak (e.g. Stevens et al., 

2011) or shown to be species-specific (Arroniz-Crespo et al., 2008; Salemaa et al., 2008). In 2005, 

ectohydric moss species were sampled for the first time at the European scale to indicate spatial 

patterns of atmospheric N deposition across Europe (Harmens et al., 2011). Detailed statistical 

analysis of the European moss data (Schröder et al., 2010a) revealed that the total N concentration in 

mosses is significantly and best correlated with EMEP modelled air concentrations and atmospheric N 

deposition rates in comparison to other predictors that might contribute to the spatial variation of N 

concentrations in mosses. The variation in the total N concentration in mosses was best explained by 

the variation in ammonium (NH4
+
) concentration in air, followed by nitrogen dioxide (NO2) 

concentrations in air. An apparent asymptotic relationship was found between EMEP modelled total 

atmospheric N deposition and the total N concentration in mosses (Harmens et al., 2011). Factors 

potentially affecting this relationship were discussed in more detail in the same study. Saturation 

appears to start at N deposition rates of ca. 15 kg ha
-1

 y
-1

, which might indicate the threshold of 

adverse impacts of N on the moss species sampled. For many habitats in Europe a N deposition of 

15 kg ha
-1

 y
-1

 is within the range or even above the empirical critical load for N (Bobbink and 

Hettelingh, 2011). 

So far, no EECCA countries have reported data on the N concentration in mosses and limited data is 

available from SEE countries. N concentrations in mosses have been determined in 2005 and 2010 in 

Bulgaria, Croatia, Macedonia and Slovenia (Table 2.3). The data for these countries are within the 

mid-range of those observed in European countries in general (Harmens et al., 2011; Harmens et al., 

2013c). In all these countries, a decline in the N concentration in mosses has been observed between 

Area AAE Area AAE Area AAE

(%) (eq ha-1 a-1) (%) (eq ha-1 a-1) (%) (eq ha-1 a-1)

EECCA

Belarus 100 460 100 397 0 14

Moldova 100 407 100 309 0 24

Russian Federation 48 78 40 52 17 33

Ukraine 100 520 100 424 0 18

SEE

Albania 92 289 81 218 12 25

Bosnia & Herzegovina 72 233 67 131 7 44

Bulgaria 77 165 38 52 51 68

Croatia 96 502 82 262 15 48

Cyprus 100 281 100 243 0 14

Greece 100 377 95 219 5 42

Macedonia 91 280 73 151 20 46

Romania 99 493 92 269 7 45

Slovenia 91 265 34 42 63 84

Other European countries

Austria 81 316 51 134 37 58

Belgium 4 7 1 1 75 86

Czech Republic 94 516 80 229 15 56

Denmark 110 718 99 365 10 49

Estonia 37 38 18 16 51 58

Finland 11 7 3 1 73 86

France 89 437 74 230 17 47

Germany 57 373 46 218 19 42

Hungary 100 667 90 370 10 45

Ireland 24 39 11 14 54 64

Italy 74 367 48 195 35 47

Latvia 93 201 75 112 19 44

Liechtenstein 100 455 100 288 0 37

Lithuania 98 390 97 318 1 18

Luxembourg 100 727 97 504 3 31

Netherlands 90 957 85 559 6 42

Norway 5 5 1 1 80 80

Poland 74 328 64 223 14 32

Portual 100 264 99 194 1 27

Slovakia 98 524 89 287 9 45

Spain 99 400 95 273 4 32

Sweden 36 62 19 19 47 69

Switzerland 75 579 66 403 12 30

United Kingdom 53 170 27 38 49 78

2005 2020 % improvement 2005-2020
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2005 and 2010, indicating that the atmospheric deposition of N has declined since 2005 in these 

countries. The decline (30%) in the median concentration in mosses in Slovenia is most likely due to a 

change in methodology (see Annex 1), where the impact of canopy drip on N concentrations in 

mosses (Kluge et al., 2013) was minimised in the 2010 survey. 

Table 2.3  Median nitrogen concentration in mosses in countries in South-East Europe that reported these 

concentrations for the 2005 and 2010 European moss survey.  

 

Little is known about the relationship between N concentration in terrestrial mosses and impacts of N 

on terrestrial ecosystems (Harmens et al., 2012b). Empirical critical loads have been defined for 

various habitats (Bobbink and Hettelingh, 2011), however, the effects indicators for exceedance have 

not been related so far to N concentrations in mosses per se. For many terrestrial ecosystems with an 

empirical critical load below 15 kg ha
-1

 y
-1

 N effects have been reported on moss species (e.g. 

changes in moss species composition or abundance). 

2.3 Ozone 

2.3.1 Background 

Ozone (O3) is a secondary air pollutant formed, and destroyed, by a series of complex photochemical 

reactions involving nitrogen oxides (NOx = NO + NO2), methane (CH4), carbon monoxide (CO) and 

non-methane volatile organic carbons (NMVOC) (Avnery et al., 2011; Royal Society, 2008). Although 

tropospheric (ground-level) O3 is a natural phenomenon, since the industrial revolution O3 

concentrations in the troposphere have substantially increased from around 10-15 parts per billion 

(10-15 ppb), to present day values of 30-40 ppb (Simmonds et al., 2004; Sitch et al., 2007) with the 

steepest rise being from 1950  to 2000 (Vingarzan, 2004; Parrish et al., 2012). Future projections of 

O3 concentrations are closely coupled to levels of anthropogenic precursor emissions (Dentener et al., 

2006). With the global population estimated to reach 9.2 billion by 2050, associated increased 

demand for resources such as fossil fuels, energy production, transport and agriculture is likely to 

further increase precursor emissions (Oltmans et al., 2006). Tropospheric O3 pollution is, therefore, a 

major concern at a local, regional and global (hemispheric) scale (Jenkin, 2008; Van Dingenen et al., 

2009). Future O3 trends will not only depend on the anthropogenic emission levels of precursors, but 

also on trends in temperature, humidity and solar radiation. A multi-model study of impacts of climate 

change alone on O3 concentrations in Europe predicts increases in the mean O3 concentration in the 

range 0.9 to 3.6 ppb for 2040-49 climates compared to 2000-09 climates (Langner et al., 2012). 

As well as these steady increases in background O3 concentrations across Europe, it is also of 

concern that O3 episodes frequently occur in which the O3 concentration exceeds 60 ppb, sometimes 

for several days at a time. In recent hot, dry years, O3 episodes have been widespread across 

Europe. For example, in July 2006, two significant O3 episodes occurred between 17 – 22 July and 25 

– 28 July. During these episodes, O3 concentrations in excess of 90 ppb were experienced in 

countries such as the UK, Belgium, Netherlands, France, Germany, Switzerland and Italy with the 

highest one hour value recorded being over 180 ppb in Italy (EEA, 2007). Even in a cooler, wetter 

year such as 2011, the EU’s information threshold (one hour at 180 μg m
-3

 (or 90 ppb) was exceeded 

in 16 Member States whilst the alert threshold of 240 μg m
-3

 (or 120 ppb) was exceeded in Bulgaria, 

France, Greece, Italy, Portugal and Spain. O3 concentrations are usually highest in rural and upland 

areas downwind of major conurbations, where unlike in cities, fewer other pollutants are present to 

react with O3 to reduce the concentration. These rural/upland areas are where many of the 

ecosystems occur that provide essential services for man (agricultural production, forest production, 

water catchments etc.). Here, O3 impacts on ecosystems will vary from direct toxicity and cell 

Decline (%)

Country 2005 2010 2005-2010

Bulgaria 1.37 1.32 4

Croatia 1.60 1.49 7

Macedonia 1.21 1.06 13

Slovenia 1.84 1.29 30

Turkey 1.41 - -

N moss (%)
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damage, to indirect effects mediated by changes in individual organisms and their ecological 

interactions, and in the rate and nature of chemical and biological processes (Ainsworth et al., 2012; 

Ashmore, 2005).  

Excessive uptake of O3 by vegetation in the short-term can cause altered physiology (photosynthesis, 

respiration, C allocation and stomatal functioning), reduced growth (both above– and below-ground), 

altered phenology and increased senescence (Mills et al., 2013). In the long-term, it may lead to 

changes in species and genetic composition and functioning of (semi-)natural plant communities 

(hence, ecosystems), and to changes in water economy and C stocks. Thus, O3 acts primarily on the 

processes which underlie the functioning of ecological systems whilst the benefits we derive from 

ecosystems are often many steps removed from these functional processes (Mills et al., 2013). 

Recently, the ICP Vegetation has reviewed impacts of O3 on food security (Mills and Harmens, 2011), 

carbon sequestration (Harmens and Mills, 2012) and ecosystem services and biodiversity (Mills et al., 

2013). 

The ICP Vegetation has been instrumental in developing O3 risk methodology for application at the 

European scale. Initially, O3 exposure indices based on accumulated exposure above a threshold 

concentration (e.g. AOT40) were recommended for use across Europe. In the last decade, a method 

has been developed that takes into account the instantaneous effects of climatic factors (temperature, 

humidity, light), soil factors (soil moisture) and plant factors (growth stage) on the amount of O3 that is 

taken up by the stomatal pores on the leaf surface (O3 flux or phytotoxic O3 dose over a threshold flux 

of Y, PODY). O3 effects detected in the field are better correlated with O3 flux than AOT40 (Hayes et 

al., 2007; Mills et al., 2011a), and the flux-based methodology has now been accepted by the LRTAP 

Convention as the preferred approach within the revised Gothenburg Protocol (Mills et al., 2011b). 

Critical levels of O3 for vegetation are defined in detail in Chapter 3 of the Modelling and Mapping 

Manual of the LRTAP Convention (http://icpvegetation.ceh.ac.uk/manuals/mapping_manual.html). 

Data used for developing critical levels of O3 for vegetation are primarily based on data from other 

parts of Europe than the EECCA and SEE region, due to a lack of data from that region.  

2.3.2 Field-based evidence of ozone impacts 

In 2007, the ICP Vegetation reported on field-based evidence of widespread O3 damage to vegetation 

in Europe for the period 1990 to 2006 (Hayes et al., 2007). Although evidence was provided for 

impacts in the Eastern Mediterranean area, data was limited to impacts observed at selected sites in 

Greece and Slovenia, with the longest time series of data being available for Slovenia. In Slovenia 

(Ljubljana), the three-month AOT40 during June - August was very variable from year to year and 

ranged from 8.1 ppm h to 18.6 ppm h during 2003 to 2006. During April - October 2003, O3 

concentrations in Ljubljana frequently exceeded 60 ppb, with several O3 episodes exceeding 80 ppb 

during June - August. In Greece, during June - August 2003 and 2004, O3 concentrations in Kalamata 

and Athens reached values up to 120 and 100 ppb respectively (Hayes et al., 2007). In 1998, O3 

peaks up to 180 ppb were recorded during a four-day period in October, resulting in commercial value 

losses of €15,000 overnight in glass houses cultivating lettuce (Figure 2.3). O3 injury has also been 

reported for wheat, maize, cotton, potato, water melon, musk melon, bean, onion, grapevine, 

courgette, chicory and fodder crops (Velissariou and Davidson, 1996; Velissariou and Skretis, 1999; 

Velissariou et al., 2000; Fumagali et al., 2001; see Annex 1 for further details).  

 

Figure 2.3  Ozone-induced leaf damage in lettuce (left), cotton (middle) and water melon (right) in Greece. 

Source: Dimitris Velissariou. 

http://icpvegetation.ceh.ac.uk/manuals/mapping_manual.html
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Injury records from this region are mainly from crops; there are only a few records for trees and 

shrubs and no records of O3 injury on grasses or forbs. It may well be that in this region O3 uptake is 

high in crops as they are often irrigated, whereas the majority of naturally occurring vegetation 

experiences hot, dry conditions during the highest O3 episodes, coinciding with low stomatal 

conductances and thus low stomatal O3 fluxes. When exposing plants in biomonitoring studies to 

ambient air, extensive O3-induced visible leaf injury has been observed on the O3-sensitive variety of 

white clover (Hayes et al., 2007) and bean in Greece and Slovenia and also on Bel-W3 tobacco 

plants exposed at several sites across the Greater Athens Region. In addition, Velissariou et al. 

(1992) reported O3-like lesions in needles of Aleppo pine within a 75 km radius from Athens. Further 

details on the impacts of O3 on vegetation in Greece and Slovenia are provided in the country reports 

in Annex 1. Few data are available on the impacts of O3 on vegetation in EECCA countries. In recent 

years, Ukraine has been participating in the O3 biomonitoring experiments of the ICP Vegetation. In 

2007, impacts of O3 on white clover were reported for Karadag, and in 2010, impacts of O3 on bean 

were reported for Kiev. In 2007, no clear impact of O3 on the sensitive cultivar of clover was observed 

in Karadag. In 2010, despite O3 injury being observed on the leaves of the sensitive variety of bean, 

this did not affect bean yield or weight. 

2.3.3 Modelled ozone risk assessment 

Due to the lack of measurements in the field on the impacts of O3 on vegetation in EECCA and SEE 

countries, modelling of O3 risk is required to assess the potential risk of O3 on vegetation in this 

region. AOT40 and PODygen (for a generic crop and deciduous tree species) were calculated with the 

EMEP atmospheric transport model (Simpson et al., 2012) using the parameterisations as defined in 

the Modelling and Mapping Manual of the LRTAP Convention (LRTAP Convention, 2011). The data 

was downloaded from the EMEP web site (http://webdab.emep.int/Unified_Model_Results/ydata.html; 

downloaded 14-02-2014, model version 2013) for the extended EMEP domain.  

AOT40 and PODygen values per 50 km x 50 km grid were averaged over five years (2007 to 2011) to 

smooth the annual fluctuations in these values. It should be noted that the modelled data only provide 

an indication of risk of O3 impacts on crops and tree species and cannot be used to calculate 

exceedances of critical levels as these have not been defined so far for a generic tree species; a 

response function for a generic crop will be evaluated shortly.  

The spatial pattern of the risk of O3 impacts on vegetation is shown in Figure 2.4. As often identified 

before for other parts of Europe, there is a clear north south gradient for AOT40, with the risk of 

impact increasing from north to south. The gradient mimics the increasing level of O3 concentration 

from north to south. According to the AOT40 approach, sensitive crop and forest species are most at 

risk from O3 impacts in SEE countries and in the southern part of the EMEP region, in particular those 

areas in the east (the ‘-stan’ countries) bordering with Central (China) and South-East Asia 

(Afghanistan, Pakistan, India). The AOT40-based critical level for agricultural crops and forest trees of 

3 and 5 ppm h respectively is exceeded in the southern part of the EMEP region. Large parts of the 

Russian Federation, particularly the northern and central part, are at low risk of O3 impacts on 

sensitive crop and tree species. As mentioned above, the O3 flux-based approach is biologically more 

relevant and correlates better with impacts on vegetation observed in the field in other parts of Europe 

(Hayes et al., 2007; Mills et al., 2011a). When modelling the risk of O3 impacts on vegetation 

according to the stomatal flux-based approach, determining the level of O3 entering the leaves as a 

measure of phytotoxic O3 dose (POD), then the pattern of risk is different from the concentration-

based (AOT40) approach. Both for crops and trees, the area at highest risk of O3 impact in the 

EECCA countries is the region bordering with Central Europe, i.e. the western part of the Russian 

Federation, Belarus, Ukraine and Moldova. Many parts of SEE are also at high risk from O3 impacts 

on vegetation, particularly for trees, with the risk being lowest in Turkey. It should be noted that the 

AOT40 and flux-based approach used here provides an estimation of the worst case for damage with 

adequate water supply (either rain-fed or irrigated). Reductions in ozone flux associated with dry soils 

such as those found in arid regions are not included in this model and thus effects may be over-

estimated particularly in the southern part of the region, including areas where crop irrigation is not 

used. More field-based evidence is required to confirm the spatial pattern of O3 risk as indicated by 

the flux-based approach, as was done before for other parts of Europe (Hayes et al., 2007).  

http://webdab.emep.int/Unified_Model_Results/ydata.html
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Figure 2.4  Indication of the spatial pattern of vegetation at risk of adverse impacts of ozone in EECCA and 

SEE countries, averaged over the period 2007-2011. Maps are shown for the concentration-
based approach (AOT40; top) and the flux-based approach (PODY; bottom). The flux-based 
risk is shown for a generic crop species (left) and a generic tree species (right) as defined for 
integrated assessment modelling (LRTAP Convention, 2011). Data per 50 km x 50 km grid 
were downloaded from the EMEP/MSC-West web site.  
Note: The flux model used to generate the data in this figure provides an estimation of the 
worst case for damage with adequate water supply (either rain-fed or irrigated). Reductions in 
ozone flux associated with dry soils such as those found in arid regions are not included in this 
model and thus effects may be over-estimated, for example in areas where crop irrigation is not 
used. 

2.4 Heavy metals 

2.4.1 Background 

In recent decades, heavy metal pollution within the EMEP region has been reduced significantly for 

many metals (Harmens et al., 2010, 2013c; Ilyin et al., 2013), partly due to international cooperation 

for pollution abatement within the LRTAP Convention. However, significant heavy metal pollution still 

remain in different parts of the EMEP region, particularly in south-eastern and eastern parts of 

Europe. Currently only two EECCA countries (Armenia and the Ukraine) have signed, and one 

country (Republic of Moldova) has ratified the Protocol on Heavy Metals. Little information is available 

on heavy metal contamination in EECCA countries and there is a need for a better coverage of heavy 

metal measurements, especially those for mercury in the southern and eastern parts of Europe and 
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Central Asia (Ilyin et al., 2013; see Figure 2.1 and Table 2.1). This might be partly achieved by 

involvement of national monitoring networks available in the countries. Only two countries - Republic 

of Moldova and Belarus officially reported their long-term trends on emissions of the three metals for 

1990 – 2011 (Ilyin et al., 2013). As for other countries, their data on trends are incomplete. To fill the 

gaps in the emission data in these countries expert estimates are used. A peculiarity of the Caucasus 

countries is the fact that the contribution of non-EMEP sources to pollution is much higher than that in 

the western part of the EECCA region. Therefore, information about emissions in nearby non-EMEP 

countries presented in the EMEP domain (e.g., Iran, Syria, Iraq etc.) is needed to improve 

calculations of pollution levels in the EECCA countries. It should be stressed that the quality of the 

pollution assessment strongly depends on the availability and quality of input information, first of all, 

on emissions. Since monitoring information for the EECCA countries is limited, assessment of 

pollution levels in these countries relies entirely on modelling. Given the large gaps of knowledge on 

national emissions and a lack of monitoring data, assessment of pollution levels in this region is rather 

uncertain. Official data on anthropogenic emissions are reported only by five of the 12 EECCA 

countries. However, no monitoring data on heavy metal concentration in air and precipitation are 

reported so far. Therefore, additional efforts are needed to facilitate development of national emission 

inventories and monitoring networks in these countries (Ilyin et al., 2013). 

2.4.2 Modelled heavy metal deposition 

As for the rest of Europe, in most EECCA and SEE countries heavy metal deposition has declined 

between 1990 and 2011 for cadmium (Cd), lead (Pb) and mercury (Hg), with the highest reductions 

being computed for Pb (Figure 2.5). The spatial distribution of the changes in heavy metal deposition 

between 1990 and 2011 is shown in Figure 2.6. The comparable level of pollution reduction is only a 

characteristic of the western part of the EECCA region (Ukraine, Republic of Moldova, Belarus, 

Russian Federation), which is largely affected by emission changes in other European countries (Ilyin 

et al., 2013). Although similar reductions were computed for Pb for Kazakhstan, Uzbekistan, 

Turkmenistan, Kyrgyzstan and Tajikistan as for other European countries, lower reductions were 

computed for Cd and Hg. The lowest reductions were reported for the Caucasus, i.e. Georgia, 

Armenia and Azerbaijan. In SEE, the lowest reductions were also reported for the eastern part of the 

region, i.e. Greece, Turkey and Cyprus, with increases being computed for Cd in Turkey and Cyprus 

(Figures 2.5 & 2.6). On average, reductions (not weighted by area) in deposition for Pb, Cd and Hg 

(ca. 60, 26 and 27% respectively) were similar in EECCA and SEE countries, but lower than in the 

rest of Europe (ca. 74, 50 and 47%).  

Hg differs from other heavy metals by its long-range dispersion in the atmosphere. Therefore, Hg 

pollution levels in Europe are largely affected by emission sources from other regions. The major 

external contributor to Hg anthropogenic deposition in Europe is East Asia. Transport from this region 

to Europe is almost double of the reverse transport from Europe to the region. As to other regions 

including North and South Americas, South and Central Asia, Africa, Australia and Oceania, Europe 

acts as a net exporter of atmospheric mercury transporting significantly more pollution to these 

regions than receiving from them (Ilyin et al., 2013). 

        
Figure 2.5  Percentage reductions in computed Pb, Cd and Hg deposition in EECCA countries (left) and 

SEE countries (right) between 1990 and 2011. The average percentage reduction in deposition 
(not weighted by area) for the rest of Europe is shown for comparison. Data source: 
EMEP/MSC-East. 
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In 2011, the highest levels of metal deposition were computed in SEE countries (although lower 

depositions were noted for parts of Turkey and in Cyprus), the south-western part of the EECCA 

region (the Ukraine, Belarus, Caucasus), some eastern parts of the Russian Federation and the 

south-eastern (Kyrgyzstan, Tajikistan) parts of the EECCA region (Figure 2.6). Relatively high levels 

in these areas are caused by location of emission sources, and partly because of transboundary 

transport from neighbouring countries. Elevated levels of Pb and Cd deposition in 2011 are partly 

explained by a significant contribution of dust re-suspension. The lowest levels were found in the 

Arctic regions of the Russian Federation, where emissions are low. In addition, deposition of metals is 

low in the desert areas of Central Asia, which can be explained by low precipitation (Ilyin et al., 2013). 

Ilyin et al. (2013) concluded that the contributions of anthropogenic, secondary and non-EMEP 

sources to pollution levels differ largely among the EECCA countries. Individual peculiarities of each 

EECCA country should be taken into account when assessing heavy metal pollution levels. 

         Cadmium    Lead    Mercury 

 

 

Figure 2.6 Deposition fields of cadmium, lead and net flux of mercury in EECCA and SEE countries (top) 

and percentage change in deposition fields of cadmium, lead and net flux of mercury in EECCA 
and SEE countries between 1990 and 2011(bottom), with positive values indicating an increase 
and negative values a decrease. Source: EMEP/MSC-East (modified from Ilyin et al., 2013). 

2.4.3 Concentrations of heavy metals in mosses 

Mosses have successfully been used as biomonitors of atmospheric heavy metal deposition, in 

particular for Cd and Pb (Harmens et al., 2010, 2012a; Schröder et al., 2010b). The first European 

moss survey was conducted in 1990 and has since then be repeated at five-yearly intervals, and the 

latest survey was conducted in 2010 (Harmens et al., 2013c). Heavy metal concentrations in mosses 

provide an indication of areas at risk from high deposition of these pollutants. Temporal trends in Cd, 

Pb and Hg concentrations in mosses agree very well with temporal trends in their deposition modelled 

by EMEP/MSC-East (Harmens et al., 2010, 2012a, 2013c). One of the advantages of determining 

heavy metal concentrations in mosses is that it is cheaper than long-term monitoring of precipitation, 

so a higher sampling density can be achieved. There is a lack of EMEP monitoring stations that 

measure heavy metal deposition in south-eastern and eastern parts of Europe (see Figure 2.1 and 

Table 2.1; Ilyin et al., 2013). Some EECCA countries (or regions of EECCA countries) and several 

SEE countries have been participating in the European moss survey since 1990 (Table 2.4). Table 

2.5 provides an overview of the median concentration of heavy metals in mosses since 1995.  
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Table 2.4  Participation of EECCA and SEE countries in the European heavy metals in mosses survey 

since 1990. Values indicate the number of sampling sites. 

 

 
       1

 Data were also reported for Kosovo from 25 sites. 

 
Table 2.5  Median concentration of metals in mosses sampled in EECCA and SEE countries between 

1995 and 2010. 

 
Note: separate data were provided for Albania and Kosovo in 2010; Rus. Fed. = Russian Federation, 
Bosn.&Herz. = Bosnia and Herzegovina. Data in brackets indicate values not corresponding with general 
temporal trends (or indicate contrasting levels in neighbouring areas, e.g. for Hg in Albania and Kosovo). 

EECCA 1990 1995 2000 2005 2010

Belarus 45 58 76

Russian Federation 216 621 319 220 91

Ukraine 75 115 53 17

SEE

Albania1 61

Bosnia & Herzegovina 23

Bulgaria 215 217 213 129

Croatia 94 121

Macedonia 73 72 72

Romania 56 84 214 333

Serbia 92 193

Slovenia 29 82 57 102

Turkey 74

Metal EECCA SEE

(mg kg-1) Year Belarus Rus. Fed. Ukraine Albania Kosovo Bos.&Herz. Bulgaria Croatia Macedonia Romania Serbia Slovenia Turkey

Arsenic 1995 0.24 0.10 0.96 0.38

2000 0.21 0.24 1.01 0.21 0.80 1.56 1.44 0.33

2005 0.15 0.23 0.22 0.37 0.68 1.41 0.43 1.71

2010 0.12 0.15 0.24 0.63 0.28 0.69 0.68 0.26

Cadmium 1995 0.29 0.18 0.18 0.38 0.60 0.73

2000 0.25 0.29 0.38 0.16 0.46 0.43

2005 0.24 0.32 0.31 0.28 0.29 0.26 0.33 0.30

2010 0.07 0.36 0.11 0.13 0.21 0.38 0.22 (1.20) 0.27

Chromium 1995 1.53 1.27 1.70 2.30 9.15 4.29

2000 1.43 1.50 3.45 2.41 7.46 8.46 5.07 2.59

2005 1.20 3.64 1.86 2.43 2.75 6.79 6.44 2.14 4.41

2010 3.21 (9.16) 0.73 4.83 2.63 2.06 1.94 3.48 4.97 1.56

Copper 1995 4.50 7.12 6.20 14.70 11.30 8.40

2000 5.84 7.31 14.51 10.82

2005 8.94 7.20 10.72 7.54 6.65 11.11 8.17 6.32

2010 7.22 (21.2) 3.96 3.04 7.01 6.06 3.54 (17.79) 5.42

Iron 1995 651 436 333 1587 1937 1007

2000 537 313 1350 1412 2412 2518 2365 713

2005 394 679 450 1399 991 2239 2267 943 1709

2010 416 419 (1414) 1629 312 1101 789 1490 1670 548

Lead 1995 8.16 4.45 3.40 19.0 26.5 8.55

2000 6.62 6.80 18.9 5.97 14.4

2005 7.65 14.8 2.57 7.62 16.7 10.1 5.09

2010 7.07 2.42 7.78 8.00 3.21 4.61 (30.8) 5.01

Mercury 1995 0.050 0.060

2000 0.040 0.039 0.056

2005 0.064 0.068 0.095

2010 (0.13) (0.033) 0.043 0.093 0.050

Nickel 1995 1.95 4.98 2.69 3.06 2.19 2.76

2000 2.01 2.06 4.85 3.33 2.39 3.35 5.65

2005 1.25 2.74 1.70 2.99 2.68 5.82 4.43 2.75 4.04

2010 (0.23) 2.82 (6.70) 5.81 2.00 2.61 3.16 3.45 3.60 2.12

Vanadium 1995 3.36 3.03 1.80 4.90 6.40 4.00

2000 2.79 1.29 7.16 4.95 6.95 7.99 9.26

2005 1.33 2.27 2.13 3.88 3.10 6.38 5.76 3.38 6.28

2010 1.19 2.45 2.63 3.52 3.07 2.55 3.49 4.89 2.30

Zinc 1995 34.7 38.0 31.0 30.5 43.9 38.8

2000 35.3 29.3 23.9 32.6 39.4 (79.6) 32.6 34.5

2005 31.3 40.1 36.2 27.9 29.0 35.6 29.0 38.6 27.5

2010 34.1 33.6 54.9 13.8 38.5 22.2 24.8 19.9 42.3 29.0

Aluminium 2005 758 850 625 1495 1346 3600 3946 2260

2010 557 922 1476 1650 1245 878 1878 3150

Antimony 2005 0.11 0.12 0.23 0.15 0.15 0.24 0.21 0.19

2010 0.096 0.092 0.21 0.12
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Figure 2.7 shows the temporal trends in the median concentration of Cd, Pb and Hg in EECCA and 

SEE countries since 1995, for those countries that submitted data for at least two survey years. 

Limited data have been reported for Hg concentrations in mosses. Temporal trends vary per country 

and per heavy metal. Temporal trends can be confounded by variability in the data due to: 

 The use of different moss species in different survey years; 

 Variation in the sampling locations between survey years (e.g. sampling in the Ukraine was 

limited in the 2010 moss survey to the populated, industrialised region of Donetsk); 

 Variation in the analytical methods between survey years (e.g. Macedonia used a mixture of 

ICP-ES and AAS in 2010 compared to INAA and AAS in 2005. For some metals the 

concentrations determined by INAA are higher than those determined by ICP-ES (Steinnes et 

al., 1997; see country report Macedonia in Annex 1); 

 Sampling of mosses not affected by canopy drip from trees in forests (e.g. Slovenia in 2010 

compared to previous years; canopy drip general results in higher concentrations of elements 

in mosses, see country report for Slovenia in Annex 1). 

These confounding factors and the relatively low area of moss sampling particularly in EECCA 

countries should be kept in mind when comparing temporal trends (Harmens et al., 2008, 2013c). 

 
Figure 2.7  Trends in the median concentration of cadmium, lead and mercury in EECCA and SEE 

countries since 1995, for those countries that submitted data in at least two survey years. Note: 
high values for Cd and Pb reported for Romania in 2010 are not included in the figure. 

 

Cadmium (Cd). In earlier years the Cd concentration in mosses was higher in Bulgaria, Romania and 

Slovenia than in the Russian Federation or the Ukraine. However, in later years similar levels were 

found in the EECCA and SEE countries, although a low Cd concentration was reported for the 

Russian Federation in 2010. For Romania very high levels were reported for Cd in 2010, which might 

be related to the methodology used for Cd analysis (atomic absorption spectrometry) or sampling in 

very polluted areas (see Annex 1 for details). Until 2005, the average median Cd concentration in 

mosses in EECCA and SEE countries was higher than for the rest of Europe, with the values for 1995 

and 2000 being higher in SEE than EECCA countries, but by 2010 the average median value was 

similar across all regions of Europe. Since 1995 the value for EECCA countries has hardly changed, 

whereas the values for SEE and the rest of Europe have declined considerably (ca. 63%). 

Lead (Pb). In 1995, the average median Pb concentration in mosses was lower in EECCA countries 

than SEE countries and the rest of Europe, with the value for SEE countries being twice that of the 

rest of Europe. Since 1995, the value for EECCA countries has hardly changed, whereas the values 

for SEE and the rest of Europe have declined considerably (ca. 69%). By 2010, the value for SEE 

countries was still being twice that of the rest of Europe. 

Mercury (Hg). Not enough data is available for Hg to make comparisons between the different 

regions of Europe. Whereas the concentration of mercury in moss has declined in Croatia and 

Slovenia between 2005 and 2010, it has increased in Macedonia since 2000. 

Arsenic (As). In general, As concentrations have been lower in mosses sampled in EECCA countries 

than SEE countries. High As concentrations have been reported for Bulgaria (2010), Macedonia, 

Romania and Serbia, with lower concentrations found in Croatia and Slovenia. Since 2000, the As 

concentration in mosses has been similar in EECCA countries and the rest of Europe. Since 1995, 
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the median concentration of As has declined between 19% (EECCA) and 35% (rest of Europe) on 

average. 

Chromium (Cr). Cr concentrations in mosses have been higher in SEE than EECCA countries due to 

the high levels reported for Macedonia, Romania and Serbia. On average, the median values were 

lower in EECCA countries than in the rest of Europe in 1995 and 2000, but the opposite was true for 

2005 and 2010. Whereas the average median Cr concentration for EECCA countries has risen by 

31% since 1995, it has declined by ca. 48% in SEE countries and the rest of Europe. 

Copper (Cu). In 1995 and 2000, Cu concentrations in mosses were higher in SEE than EECCA 

countries due to high concentrations being observed in Bulgaria and Romania. However, by 2005 this 

difference had disappeared and since 2005 the median Cu concentration in mosses has been similar 

in EECCA and SEE countries and the rest of Europe. Whereas the average median Cu concentration 

for EECCA countries has risen by 22% since 1995, it has declined by 20 and 56% in the rest of 

Europe and SEE countries respectively. 

Nickel (Ni). Ni concentrations in mosses were quite similar in 1995 and 2010 in EECCA and SEE 

countries, but were higher in SEE countries in 2000 and 2005, partly due to data being reported for 

Serbia where relatively high Ni concentrations were found in mosses in those years. Unusually high 

and low Ni concentrations were reported for Ukraine and Belarus respectively in 2010, which for 

Ukraine can be explained by sampling mosses in a smaller, more polluted region compared to 

previous years. Whereas the average median Ni concentration for EECCA and SEE countries has 

hardly changed since 1995, it has declined by 50% in the rest of Europe. 

Vanadium (V). Relatively high V concentrations in mosses have been observed in Bulgaria, 

Macedonia, Romania and Serbia, in particular until 2005. Therefore, on average the median V 

concentration in mosses has been higher in SEE than EECCA countries, with the difference being 

smaller in 2010. Median values in the rest of Europe were on average similar as those in EECCA 

countries. Since 1995, the median V concentration has declined on average by ca. 24% in EECCA 

countries and the rest of Europe, and by 36% in SEE countries. 

Zinc (Zn). Zn concentration in mosses vary the least between countries (Harmens et al., 2010, 

2013c). Small fluctuations between years resulted in higher Zn concentrations in one of the regions in 

one year and in another region in another year. Between 1995 and 2010, the median Zn 

concentration has increased on average by 18% in EECCA countries, it has declined by 18 and 22% 

in the rest of Europe and SEE countries respectively. 

Although we have tried to compare and generalise trends between EECCA, SEE and the rest of 

Europe, one should bear in mind that data availability is limited, particularly for EECCA countries. In 

addition, considerable variations in heavy metal concentrations in mosses and temporal trends were 

observed in the rest of Europe. Participation of EECCA and SEE countries in future moss surveys 

should be stimulated considering the fact that either relatively high levels of heavy metal pollution 

remain in these countries and/or the decline in pollution levels has been less than in the rest of 

Europe.  

A review of the scientific literature showed that little is known about the relationship between heavy 

metal concentrations in mosses and the impacts of heavy metals on terrestrial ecosystems. Toxicity 

effects of heavy metals on vegetation are usually limited to areas close to pollution sources, with 

impacts often declining exponentially with distance from the pollution source (Harmens et al., 2012b, 

and reference therein). However, in the European survey, mosses are not sampled close to pollution 

sources and hence concentrations are often too low to be associated with an impact on terrestrial 

ecosystems in the sampling areas. This does not mean, however, that we should not be concerned 

about heavy metal deposition in remote areas as metals will accumulate in the soil and might become 

a problem in the future if bio-available concentrations reach critical limits. 

2.4.4 Critical load exceedances for heavy metals 

Although deposition of heavy metals to above-ground plant parts can lead to uptake via the leaves 

(Harmens et al., 2005), the risk of heavy metal toxicity to terrestrial ecosystems is often expressed as 

a function of the free metal ion concentration in soil solution. The LRTAP Convention has developed 
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the critical loads approach based on established critical limits of heavy metals in soil solution (LRTAP 

Convention, 2004). These critical limits are based on no-observed effect concentration (NOEC), often 

determined for single metals in standardised laboratory conditions for specific indicator species of 

toxicity. Little is known about the toxicity of metal mixtures in soil solutions and hence the NOEC for 

metal mixtures. Exceedance of the critical loads provide an indication of the risk of adverse impacts of 

heavy metals on terrestrial ecosystems. Hettelingh and Sliggers (2006) concluded that available 

information on the metals As, Cr, Cu, Ni, Zn and selenium (Se) suggests that none of these metals 

achieve high enough concentrations as a result of long-range atmospheric transport and deposition, 

to cause adverse effects on terrestrial ecosystems. However, although the area of exceedance of the 

critical loads for these heavy metals is small, even small exceedances may result in effects in the 

future due to the accumulative nature of heavy metals in soils. These results support the focus of the 

1998 Aarhus Protocol on Heavy Metals on the metals Cd, Hg and Pb.  

Table 2.6 Exceedances of critical loads for cadmium (Cd), lead (Pb) and mercury (Hg) for terrestrial 

ecosystem effects in 2010 in eastern and south-eastern Europe. Ex. % = percentage area 
exceeded; AAE = average accumulated exceedance. Source: Coordination Centre for Effects, 
RIVM, Bilthoven (see Slootweg et al., 2010). 

 
 

 
Figure 2.8  Average accumulated exceedance (AAE) of critical loads for cadmium (left), lead (middle) and 

mercury (right) for terrestrial ecological effects in 2010 in eastern and south-eastern Europe. 
Source: Coordination Centre for Effects, RIVM, Bilthoven (see Slootweg et al., 2010). 

 

For Cd, the percentage of area with critical load exceedance for terrestrial ecotoxicological effects 

was generally below 1% in 2010, except for Macedonia, where the area of exceedance is 17% (Table 

2.6). Most EMEP grids with exceedance for Cd in 2010 are in the Russian Federation (Figure 2.8), 

but the percentage of area exceeded is only 1% as the ecosystem area is large in the Russian 

Federation. For Pb the area and magnitude of exceedances are much higher, with exceedance 

occurring in all the countries included here. The area of exceedance is higher than 40% in the 

Russian Federation, Bosnia-Herzegovina and Macedonia and these countries also had the highest 

average accumulated exceedance (AAE). High exceedances were observed in a large are of the 

Russian Federation. The lowest percentage (2%) area of exceedance for Pb was computed for 

Romania. Hg has the largest exceedances, with the percentage area of exceedance being 98% or 

EcoArea

Country  (km-2) Ex. % AAE Ex. % AAE Ex. % AAE

EECCA

Belarus 121128 0 0.00 9 0.44 100 0.12

Moldova 2227 0 0.00 27 0.48 100 0.11

Russian Federation 1393300 1 0.01 46 4.51 100 0.16

SEE

Albania 10082 0 0.00 15 0.79 99 0.16

Bosnia-Herzegovina 30726 0 0.00 53 3.47 100 0.22

Croatia 23666 0 0.00 19 0.77 100 0.14

Greece 30989 1 0.01 20 0.61 100 0.27

Cyprus 8148 1 0.00 33 0.89 - -

Macedonia 12068 17 0.63 45 5.42 100 0.32

Romania 89580 0 0.00 2 0.10 100 0.15

Serbia & Montenegro 43858 1 0.01 29 1.44 100 0.19

Slovenia 13538 0 0.00 10 0.17 98 0.13

Cd Pb Hg
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more in all countries. The lowest exceedances for Hg were computed for northern parts of the 

Russian Federation, widespread exceedance was computed for all the other areas. Continued effort 

is required to reduce the exceedances of the critical load for Pb in the Russian Federation and 

continued effort is required in all EECCA and SEE countries to reduce the exceedances of the critical 

load for Hg. As Hg is a global pollutant, efforts are required at the hemispheric scale under the 

Minamata Convention to reduce Hg pollution. Hardly any field-based evidence is available to validate 

the critical load exceedance calculations for terrestrial ecosystems. De Zwart et al. (2010) made a first 

attempt to estimate the loss of species due to Cd and Pb depositions in Europe. They concluded that 

toxicity effects of Cd and Pb are close to zero in the vast majority of ecosystems across Europe. 

2.5 Persistent organic pollutants (POPs) 

2.5.1 Background 

Persistent organic pollutants (POPs) are organic substances which are a concern for the environment 

and human health as they: possess toxic characteristics; are persistent; bioaccumulate; are prone to 

long-range transboundary atmospheric transport and deposition; are likely to cause significant 

adverse human health or environmental effects near to and distant from their source (LRTAP 

Convention, 1998). POPs are mainly of anthropogenic origin (Breivik et al., 2006), for example from 

waste incineration, industrial production and application (e.g. pesticides, flame retardants, coolant 

fluids) and fossil fuel burning. They show weak degradability and consequently are accumulating in 

the environment across the globe, including in remote areas such as the polar regions. The 

combination of resistance to metabolism and lipophilicity (‘fat-loving’) means that POPs accumulate in 

food chains (Jones and de Voogt, 1999). Their ecotoxicity has been highlighted in aquatic (Leipe et 

al., 2005) and terrestrial ecosystems (e.g. Oguntimehin et al., 2008; Smith et al., 2007). 

2.5.2 Modelled deposition of POPs  

Due to international cooperation and measures for pollution abatement within the LRTAP Convention, 

pollution from POPs has substantially decreased during the past two decades. However, levels of 

POP concentrations in the EMEP countries still pose risk to human health and ecosystems (Gusev et 

al., 2013). Currently only two of the EECCA countries (Armenia and the Ukraine) have signed, and 

one country (Republic of Moldova) – has ratified the Protocol on POPs. Only two countries (Slovenia 

and Greece) in the EECCA/SEE region monitor the deposition of POPs at EMEP monitoring sites 

(see Table 2.1). 

        

Figure 2.9  Percentage reductions in computed B[a]P and PCCD deposition in EECCA countries (left) and 

SEE countries (right) between 1990 and 2011. The average percentage reduction in deposition 
(not weighted by area) for the rest of Europe is shown for comparison. 

 
Model assessment indicates reduction of POP pollution in the most of the EECCA and SEE countries 

from 1990 to 2011 (Figure 2.9). In most of the studied region, the computed deposition of HCB has 

dropped by more than 87% since 1990 (Gusev et al., 2013; data not shown), while for polychlorinated 

dibenzodioxin (PCDD) and benzo[a]pyrene (B[a]P; representing polycyclic aromatic hydrocarbons - 

PAHs) the decline was relatively small, especially in EECCA countries. The decrease in POP pollution 

particularly in EECCA countries but also SEE countries does not follow the magnitude of decline in 

the rest of Europe. Comparable levels of pollution reduction were seen in the western part of the 
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region, which is mostly affected by the emission changes in the EU countries (Gusev et al., 2013). 

Further improvement of the evaluation of POP pollution levels in the EECCA and SEE countries 

requires the refinement of information on their emissions.  

               B[a]P    PCDD    HCB 

 

Figure 2.10  Deposition fields of B[a]P, PCDD and HCB in EECCA and SEE countries in 2011 Source: 

EMEP/MSC-East. 

 
Polycyclic Aromatic Hydrocarbons (PAHs). Model assessment indicates that PAH pollution 

represented by B[a]P decreased by 30% from 1990 to 2011 in the EMEP region (Gusev et al., 2013). 

The highest decline was computed for the EU countries (almost 40%). Reduction of B[a]P pollution 

levels was more significant during the 1990s. Pollution by PAHs varies considerably in the EECCA 

and SEE countries (Figure 2.10). In 2011, the highest levels of B[a]P deposition were computed for 

the western part of the region. Between 1990 and 2011, the highest reductions in B[a]P deposition 

were reported for the south-western part of the Russian Federation and the border with the Ukraine, 

Armenia, Cyprus and Albania. A slight increase in the B[a]P deposition was calculated for many 

eastern parts of the EECCA region (Gusev et al., 2013). 

Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Complex assessment of 

PCDD/F pollution in the EMEP countries is currently hampered by the absence of regular 

measurements of PCDD/Fs at the EMEP monitoring sites (Gusev et al., 2013). According to model 

assessments, PCDD/F pollution levels in the EMEP region decreased from 1990 to 2011 by 55%. 

Similar to PAHs, the highest decline was indicated for the EU countries (75%). The highest deposition 

of PCDD/Fs in 2011 was computed for SEE countries and the south-western part of the EECCA 

region. Relatively low concentrations were computed for large areas of the EECCA region (Figure 

2.10). For PCDD/Fs, the decrease in deposition in the EECCA and SEE region is generally higher 

than for PAHs (Figure 2.9).  

Hexachlorobenzene (HCB). HCB is a pollutant of global dispersion with significant potential to 

cycling between the environment compartments (Gusev et al., 2013). Modelling of HCB global 

transport and accumulation in the environment, performed on the basis of the scenario of historic and 

contemporary HCB emissions, indicated significant decline of HCB pollution within the EMEP region 

from 1990 to 2011 by almost 90%. In 2011, elevated deposition of HCB can be seen in areas with 

historic emissions, which led to substantial accumulation of HCB in the soil. The highest levels of HCB 

were generally computed for the Russian Federation, especially in the north-east, and the western 

part of the EECCA and SEE region (Figure 2.10).  

2.5.3 POPs concentrations in mosses  

Although mosses can also be used as biomonitors of atmospheric POPs pollution (Harmens et al., 

2013a), the concentration of polycyclic aromatic hydrocarbons (PAHs) have only been determined at 

selected sampling sites in Slovenia in 2010 (Harmens et al., 2013b) and not in any other EECCA or 

SEE country taking part in the European moss survey. PAHs concentration in mosses in Slovenia 

were of a similar magnitude as those found in mosses sampled in Norway and were much lower than 

those reported for France, Spain (Navarra region) and Switzerland.   
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3. Concentrations and effects of air pollutants on vegetation in  

South-East Asia 

 
Lisa Emberson, Joanne Morris, Patrick Büker, Harry Harmens, Gina Mills 

3.1 Background  

This review provides information describing current knowledge on concentrations, deposition and 

vegetation impacts of a number of air pollutants identified as particularly important across the South-

East Asian region. This region encompasses the eight Malé Declaration countries: Bangladesh, 

Bhutan, India, Iran, Maldives, Nepal, Pakistan and Sri Lanka. The pollutants investigated are ozone 

(O3); nitrogen species (oxidised (NOx) and reduced (NHy) forms that impact both as toxic gases as 

well as via deposition leading to soil acidification); aerosols (with a special focus on black carbon 

(BC)) and heavy metals (with a special focus on lead (Pb), cadmium (Cd), iron (Fe), zinc (Zn), nickel 

(Ni) and mercury (Hg)). This report provides new data from that presented in a previous ICP 

Vegetation food security report (Mills and Harmens, 2011) which had collated data up to 2010, 

focussing on O3.  

Since the late 1990s, emissions of air pollutants have increased rapidly in Asia due to enhanced 

industrialisation, which is directly linked to continued strong economic growth of about 10% in China 

and India. Although legislation has attempted to curb emissions from the transport and power plant 

sector, emissions continue to grow, with the Asian contribution to the global emissions of SO2 and 

NOx increasing from 30 and 20% at the beginning of the 1990s to 50 and 35% in 2005, respectively 

(WMO/UNEP, 2011). Emissions in Asia make up a substantial fraction of the global emissions for all 

pollutants, with China responsible for 60 to 80% of all ‘North-East Asia, South-East Asia and the 

Pacific’ emissions. A number of reviews of emissions from the Asian region (often focussing on the 

main polluters, India and China) have been published recently (Cofala et al., 2007; Fang et al., 2010; 

Klimont et al., 2009; Wu et al., 2007) and scientists are starting to make good use of remote sensed 

data to verify emission inventory work and models (Klimont et al., 2009). 

3.2 Emission sources  

The following sectors were identified as main emitters of key air pollutants: 

NOx. Power plants and road transport. Economic growth is accompanied by strong growth in vehicle 

mileage and freight transport volumes with transport demand in Asia expected to increase by a factor 

of 4-5. The emission control legislations present in most Asian countries will limit growth in Asian NOx 

emissions by no more than 45 to 50% by 2030. In South Asia, NOx emissions are expected to 

increase from 6 Tg NO2 yr
-1

 in 2000 to 10 Tg NO2 yr
-1

 in 2030 according to current legislation 

scenarios (Cofala et al., 2007). 

Volatile Organic Compounds (VOCs, including methane - CH4). The absence of widespread 

mitigation policies together with the projected economic growth indicates approximately 50% higher 

emissions of CH4 for 2030 compared to 2000 (Cofala et al., 2007). In South Asia, CH4 emissions are 

expected to increase from 35 Tg CH4 yr
-1

 in 2000 to 47 Tg CH4 yr
-1

 in 2030 according to current 

legislation. Increases are expected from all sectors except from the use of solid biomass for energy 

purposes. 

Carbon monoxide (CO). CO is emitted whenever fossil fuels and vegetation are incompletely 

combusted, whether in residential stoves, industrial boilers, vehicles or through biomass burning. CO 

emissions have been declining globally due to a decoupling from  economic growth with declining use 

of coal and fuel wood in domestic small stoves and the use of three-way catalysts (Cofala et al., 

2007). In South Asia, CO emissions are expected to decrease from 61 Tg CO yr
-1

 in 2000 to 52 Tg 

CO yr
-1

 in 2030 according to current legislation scenarios (Cofala et al., 2007). 
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Ammonia (NH3). No data could be found describing NH3 emissions specifically for South Asia (or 

South Asian countries). More general studies investigating across Asia suggest that animal excreta is 

the main source of NH3 emissions across the region (WMO/UNEP, 2011).  

BC and organic carbon (OC). The main sector currently contributing to both BC and OC emissions 

is biomass burning in the  residential sector (Klimont et al., 2009). BC emissions are expected to 

remain relatively stable in South Asia with values of 0.8 Tg C yr
-1

 in 2000 compared with 0.7 Tg C yr
-1

 

in 2030 according to current legislation scenarios (Cofala et al., 2007). This is mainly due to the 

increase in road transport and likely continued reliance on traditional cooking and heating appliances 

and practice of crop residue burning up to 2030 in this region. OC emissions are likely to decrease 

rather more substantially in South Asia with values of 1.9 Tg C yr
-1

 in 2000 compared to 1.0 Tg C yr
-1

 

in 2030 according to current legislation scenarios (Cofala et al., 2007).  

Sulphur dioxide (SO2). Emissions from power plant emissions account for over 50% of all SO2 

emissions (Klimont et al., 2009). SO2 emissions across the whole of Asia are expected to grow by a 

factor of 2–3 due to the large increase in coal use for power generation without adequate pollution 

control. In South Asia, SO2 emissions are expected to increase from 7 Tg SO2 yr
-1

 in 2000 to 22 Tg 

SO2 yr
-1

 in 2030 according to current legislation scenarios (Cofala et al., 2007).  

Heavy metals. A recent review by Fang et al. (2010) provides details of atmospheric metallic element 

pollution in Asia over the past decade. Most studies were conducted in East Asia though the 

contribution sources that occur most often will be relevant for the whole of Asia. The study found that 

the combustion of waste and fuel generates particulate matter such as Pb, Cd, and Cr; higher 

concentrations of Pb were often related to high vehicle emissions close to the measurement site. 

Calcium (Ca), magnesium (Mg) and manganese (Mn) indicate construction materials as sources, 

while aluminium (Al), potassium (K), tin (Ti) and Mn indicate sources from wind-blown soils. Metallic 

element concentrations of Cd, Mn, Ni and Zn were significantly higher at industrial sites and are 

attributed to the pyrometallurgical processes (Pb and Zn smelters, non-ferrous metal industries, etc.). 

Analysing Hg flows in India, Burger Chakraborty et al. (2013) found coal power plants to be the 

predominant source of mercury emitted to the air, followed by metal production, mainly Zn. Other Hg 

sources are consumer products (e.g. lamps, dental amalgam) and the chlor-alkali industry.  

3.3 Atmospheric concentration and deposition 

This section provides some details of either monitored or modelled data of pollutant concentrations 

(O3, N deposition, atmospheric aerosol and heavy metals) in South-East Asia and gives an indication 

of the magnitude and extent of pollutant concentrations across the region, together with the level of 

risk from each pollutant region-wide. 

3.3.1 Ozone  

Despite being a main polluter, monitored data from rural locations are relatively sparse across India 

and are often measured by individuals (i.e. not part of a co-ordinated monitoring campaign). A number 

of recent modelling studies have reviewed these ad hoc monitoring data in an effort to assess the 

accuracy of photochemical models used in risk assessment. These comparisons tend to focus on 

seasonal variation (Avnery et al., 2011; Van Dingenen et al., 2009) though one study also looked at 

diurnal variation (Engardt, 2008) in terms of capturing profiles of O3 concentrations at locations across 

the region. An example of such comparisons is provided in Figure 3.1. 

Most of these studies conclude that i) the seasonal O3 profile is captured reasonably well; ii) O3 

concentrations tend to be overestimated, especially in Northern India. For example, Avnery et al. 

(2011) reported that the O3 concentrations simulated by MOZART-2 in northern India were 

significantly overestimated by ca. 10-18 % throughout the year. The greater overestimates in North 

India may be due to the use of measured urban O3 data for these comparisons that will tend to be 

lower than concentrations in rural areas. Other reasons may be due to modelled data often 

representing a specific height above the ground surface, e.g. Van Dingenen et al. (2009) used 

modelled data at a height of 30 and 10 m for the comparison, which is likely to overestimate 

concentrations compared to crop height. The data from Engardt (2008) shows the model tendency to 
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overestimate night time O3 concentrations which may be a consequence of models struggling to 

represent stable conditions when O3 would be expected to be titrated out of the atmosphere by 

reactions with NOx or via deposition. Similar night time overestimations were also found in modelled 

vs. observed comparisons performed by Mittal et al. (2007) with the HANK model.  

 

Figure 3.1  Comparisons of annual monthly mean surface ozone concentrations with modelled estimates 

based on the TM5 model for North India and South India (Reproduced from Van Dingenen et 
al., 2009). Dots and error bars indicate observed data, solid lines modelled data at a height of 
30 m and dashed lines modelled data at a height of 10 m. 

 

 

Figure 3.2 Modelled monthly mean ozone concentrations for February to May 2000 across the south 

Asian region using the HANK model (N.B. values given in ppb v; reproduced from Mittal et al., 
2007). 

In spite of these model limitations, the picture provided is of peak diurnal O3 concentrations around 

midday often extending into late afternoon and during the months of October through to April. The 
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depression in seasonal O3 concentrations during the monsoon period (around July to September) is 

also captured reasonably well in most models. Despite dissimilarities of, for example, the MATCH 

model (Engardt, 2008) and the HANK model (Mittal et al., 2007) regarding the absolute O3 

concentrations per region, both models show that the spatial pattern differs seasonally and that 

Northern India (and the corresponding South Asian region) tend to show higher O3 concentrations 

than in South India (Figure 3.2), most likely due to a higher density of industrial and urban emissions 

in the north and ocean influenced atmospheric circulation patterns in the south. Hence, the models 

provide a useful indication of the geo-spatial extent of O3 concentrations across the South Asian 

region.  

 

Figure 3.3  Spatial distribution of (a) 90 days AOT40, (b) 75 days AOT40, (c) POD6, and (d) POD12 over 

the study domain for the years 2000 (left) and 2020 (right; reproduced from Tang et al., 2013). 
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Recently, studies have begun to focus on estimating metrics that relate O3 concentrations to plant 

damage. Engardt (2008) and Mittal et al. (2007) both used the AOT40 index to characterize O3 

concentrations across the region. Both studies found AOT40 to exceed the critical level of 3 ppm h for 

crops set by the UNECE LRTAP Convention (LRTAP Convention, 2011) across many parts of India 

and particularly during the period March to May inclusive.  

More recently, studies have also investigated the flux based metric (PODY; Mills et al., 2011b). Tang 

et al. (2013) simulated surface O3 concentrations and evaluated O3-induced wheat production loss in 

China and India for the years 2000 and 2020 using dose–response functions based on AOT40 and 

PODY. Two O3 dose metrics (90 days AOT40 and POD6 - Pleijel et al., 2007) were derived from 

European experiments, and the other two (75 days AOT40 and POD12 - Feng et al., 2012) were 

adapted from Asian studies (Figure 3.3). The AOT40 metrics indicated greater O3 exposure in 

central-eastern China, the Pearl River Delta and Tibet for China, and around the northernmost 

regions, Indo-Gangetic Plain, and mega cities for India. With large future increases in O3 

concentrations, some areas in the Yangzi River Delta and the most northern part of India will 

experience more than 15 ppm h for 90 days AOT40 in 2020. The spatial distribution for POD12 is 

similar to that of AOT40 as the effect of temperature on opening of the leaf pores is not considered 

(Tang et al., 2013). POD6 is close to zero in the Tibetan plateau, but elevated in southern and central 

India due to stomatal closure in cold climates and opening in warm climates, respectively. 

3.3.2 Nitrogen  

Similar to the situation for O3, the Indian and south Asian region has not had a comprehensive 

systematic network to monitor deposition fluxes of N species. The ‘Composition of the Atmospheric 

Deposition’ (CAD) program was an effort to study wet and dry deposition in Asia focusing upon quality 

of data (www.sei-international.org/rapidc/networks-cad.htm). The CAD programme results highlighted 

the deposition of nitrate and ammonia at rural and urban sites in India (Kulshrestha et al., 2005). In 

India, most of the rainfall occurs during the monsoon period (June–September) and the remaining 

period is dominated by dry weather conditions. Even during monsoons, there are gaps of several 

days when it does not rain. Thus, the importance of dry deposition of atmospheric constituents in the 

Indian region should not be overlooked. Indeed, according to Kulshrestha et al. (2005), dry deposition 

of gaseous ammonia is more significant than its wet deposition in India.  

 

Figure 3.4  Concentration (μeq l
-1

) of ammonium (NH4
+
;
 
left) and nitrate (NO3

-
; right) in rain in India. Data 

from measurements at rural and suburban (underlined) sites obtained with bulk (black) and wet 
only (red) collectors compared with the concentration field with the MATCH model for the year 
2000 (reproduced from Kulshrestha et al., 2005). 

 

Unfortunately, not many reports are available on dry deposition in India. Among the limited studies 

available, most of these consider dust fall as dry deposition without differentiating dry deposition of 

gases and particles. Figure 3.4 shows the ammonium (NH4
+
) and nitrate (NO3

-
) concentration in 

rainwater in India in comparison with the concentration fields obtained with the Match model for the 

http://www.sei-international.org/rapidc/networks-cad.htm
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year 2000. In an estimate based on EMEP dry deposition velocities, Singh et al. (2001) found that dry 

deposition of NH4
+
 was 9 times more significant than wet deposition at Agra. Wet deposition of NH4

+
 

has been reported as 3.4 kg ha
−1

 yr
−1

 as compared with 39 kg ha
−1

 yr
−1

 of dry deposition. 

3.3.3 Atmospheric aerosols 

Rather than characterising concentrations for specific aerosol classes, e.g. BC, OC, sulfates etc., for 

which information – often only for short periods of time - is typically available for some South Asian 

cities only (e.g. Dutkiewicz et al., 2009; Rengarajan et al., 2007), here the focus will be on the aerosol 

optical depth (AOD) as a measure for assessing the total load of atmospheric aerosols of a particular 

area. As such AOD represents the sum of aerosols of different provenances (e.g. urban haze, smoke, 

(sand) dust, sea salt) distributed within a column of air ranging from the top of the atmosphere to the 

ground surface or vegetated canopy. The higher the AOD value, the higher the aerosol load; and the 

higher the aerosol load, the lower the visibility as well as the solar radiation reaching the ground 

surface. Remer et al. (2008) published a global study of modelled AOD based on daily MODIS 

(Moderate Resolution Imaging Spectroradiometer) aerosol products. South Asia exhibits especially 

high AOD values frequently exceeding a value of 0.4 during the northern summer, with an annual 

mean of approx. 0.34.  

Table 3.1  Reported aerosol optical depth (AOD) values for South Asia. 

Location AOD (average for 
indicated period) 

Comment Reference 

Trivandrum, SW India 0.37 (Dec. – May) Average of multi-wavelength-
radiometer (MWR) observations at 
four wavelengths  

Krishna Moorthy et 
al. (2007) 0.30 (June - Aug) 

0.32 (Oct. - Nov.) 

Kathmandu, Nepal 0.41-0.62 (Dec. – Feb) Ground-based measurements at 
500 nm  

Di Girolamo (2004) 

Kanpur (IGP), India 0.44-0.72 (Dec. – Feb.) 

Manora Peak, 
Himalaya, India 

0.02-0.12 (Dec. – Feb.) 

Port Blair, Andaman 
Islands, India  

0.34 (Feb.) 

Bangalore, India 0.26-0.28 (Dec. – Feb.) 

Anantapur, South 
India  

0.44-0.48 (winter) Multi-wavelength-radiometer 
(MWR) observations at ten 
wavelengths 

Kumar et al. (2009) 

0.49-0.51 (summer) 

0.28-0.46 (monsoon) 

Hyderabad, India 0.65 (pre-monsoon) Ground-based measurements at 
500 nm 

Kaskaoutis et al. 
(2009) 0.46 (post-monsoon) 

Visakhapatnam (AP), 
India 

0.64 (May) Ground-based measurements at 
500 nm 

Niranjan et al. 
(2011) 0.33 (Nov.) 

Kanpur (UP), India 0.57 (winter) Ground-based measurements at 
500 nm 

Singh (2004) 

0.54 (pre-monsoon) 

0.66 (monsoon) 

0.63 (post-monsoon) 

Dibrugarh (Assam), 
India 

0.45 (pre-monsoon) Ground-based measurements at 
500 nm 

Gogoi et al. (2009) 

0.19 (post-monsoon) 

0.31 (winter) 

Patiala (IGP), India 0.26 (March) Multi-wavelength-radiometer 
(MWR) observations at 500 nm 

Singh et al. (2008) 

0.36 (April) 

0.58 (May) 

 

Table 3.1 summarises some observed AOD values (either using remote sensing techniques or 

ground-based measurements) from South Asia, averaged over different time steps varying from 

months to seasons. There are large variations in AOD values, mainly due to the seasonality of 

aerosol loading. It should be noted that in general ground stations measuring the loading and 

speciation of aerosol are sparse in the region (Li et al., 2007). The AOD values given in Table 3.1 are 
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in agreement with various other sources (e.g. Holben et al., 1998; Kaufman et al., 2002; Badarinath et 

al., 2007) that have confirmed that South Asia is a region of high AOD as compared to other regions, 

due to rapid growth leading to various anthropogenic aerosol sources and the adjacency to large arid 

areas (Streets et al., 2009). In particular the Indo-Gangetic Plain, South Asia’s most important 

agricultural region, persistently has very high AOD values (Di Girolamo, 2004; Singh et al., 2008). 

3.3.4 Heavy metals 

Heavy metal deposition varies significantly according to location and season. Concentrations increase 

with proximity to emission sources, and vary with type of industry or land use as well as traffic density 

(Sharma et al., 2008a). Changes in climatic factors between summer, winter and monsoon seasons 

affect seasonal variations in heavy metal deposition (Khillare and Sarkar, 2012; Khillare et al., 2012; 

Shah et al., 2006), with concentrations of crustal metals such as Fe being higher in summer aided by 

dust storms, while industrial metals such as Cd, Ni, Zn and Cr are higher in winter due to being 

trapped beneath inversion layers. Rains in the monsoon season remove particles from the air, 

reducing atmospheric metal concentrations. Monitoring of dry deposition of heavy metals in the area 

surrounding Udaipur city, Rajasthan, India, Pandey & Pandey (2009a, 2009b) found steady increases 

in Cd, Cu, Ni and Zn from 1999 to 2005, but a significant decrease in Pb, suggested to be the result of 

the increasing use of unleaded fuel (Figure 3.5). In general, these values are deemed comparable to 

other regions in India, attributed to urban-industrial emissions. The higher Zn values are attributed to 

a nearby zinc smelter and mining.  

 

Figure 3.5  Temporal trends (1999 – 2005) in annual deposition of heavy metals in Udaipur, Rajasthan, 

India (adapted from Pandey & Pandey (2009a). Note that Zn is drawn on the second axis. 

 

Limit values and heavy metal concentrations in soil, air and plants in South Asia are shown in Table 

3.2. For limit values, comparisons are shown with Canada, Europe and UK. The deposition of some 

or all of the heavy metals Zn, Cu, Cd, Pb and Fe onto fruit and vegetables across India has been 

found to exceed WHO and Indian national limits for safe consumption, during production (Figure 3.6 - 

vegetables (Pandey and Pandey, 2009a); cereals (Pandey and Pandey, 2009b)), during transport to 

markets (Sharma et al., 2009), or while being sold at the roadside in urban areas: Berhampur City, 

Odisha (Adhikary, 2012); Varanasi, Uttar Pradesh (Sharma et al., 2008b)). This deposition comes 

predominantly from traffic and industrial emissions during production, traffic emissions during 

transport from farms to market, as well as urban traffic and industrial emissions while being sold. 
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Table 3.2  Limit values and recorded heavy metal concentrations in soil, air and plants in South Asia. For 

limit values, comparisons are shown with Canada, Europe and UK. 

Metal Limit in agric 
soil (µg g

-1
) 

Min-max 
Pakistan 
(Ishaq et al., 
2013) 

Mean(max) 
Varanasi, IN 
(Sharma et al., 
2009) 

 Limit in 
plants (µg 
g

-1
)

 

(Nagajyoti 
et al., 
2010) 

ppm 
min-
max 
(Ishaq 
et al., 
2013) 

min-max 
Pakistan 
(Hussain 
et al., 
2005)  
 

min-max Uttar 
Pradesh 
(R. Bajpai et 
al., 2010a)  
 

Cd 1.4 (CA)
1
 

1.8 (UK)
2
 

3-6 
(IN)(Nagajyoti 
et al., 2010) 

0 - 1.89 1.27 (2.3)  1.5 0-0.41   

Pb 70 (CA) 
250-500 (IN) 

4.23 - 16.24 6.4 (10.3)  2.5 0.74-
12.19 

0.02 - 0.2 0.5 - 9.3 

Fe  19.05-60.03    2.36-
45.10 

18.23 - 
62.24 

206-1500 

Zn 200 (CA) 
300-600 (IN) 

32.95 - 59 109 (133)  50 2.39-
31.25 

0.97 - 2.24 7.8 - 60 

Ni 50 (CA) 
75-150 (IN) 

4.21 - 18.01   1.5 1.05-
5.08 

0.13 - 0.43 0.6 - 18.3 

Cr 64 (CA) 1.84-2.95   20 0.07-
1.10 

0.09 - 0.94 0.93 - 12.1 

         

 
 

Limit in air (ng 
m

-3
) 

3
 

 (ng m
-3

) 

Mashhad, Iran 

(Pourkhabbaz 

et al., 2010) 

mean(max) 
ng m

-3
 

Islamabad 
(Shah et al., 
2006) 

mean ng 
m

-3
 

Tehran 
(Shah et 
al., 2006) 

mean 
ng m

-3
 

Delhi 
(Shah et 
al., 
2006) 

mean ng 
m

-3
 Dhaka 

(Shah et 
al., 2006) 

mean(max) ng 
m

-3 
Ahvaz, Iran 

(Burger 
Chakraborty 
et al., 2013) 

Cd 5    2 (17) - 6.7 2.51  

Pb 500  98.2 - 7.5 210 (4075) 1020 380 279  

Fe    930 (5979) 2230 5220 24800  

Zn   4.8 - 2.0 542 (2350) 327  801  

Ni 20   31.2 - 24.0 9 (157) 37 97   

Cr   49.6 - 9.3 42 (398) 48 104   

Hg        20.7 (48.6) 

 India Air 
Quality 
Guidelines (µg 
m

-3
)

4
 annual 

(24hr) 

min-max 
(peak) 
Varanasi 
(Pandey and 
Pandey, 
1994)   

Min-max: Uttar 
Pradesh 
(Agrawal and 
Singh, 2000) 

(Pandey, 
2005) 

    

Ozone 100(180) 16 - 48 (30 - 
149) 

      

SO2 50(80) 15 - 79 (39 - 
238) 

48-233 Avg: 15 - 86 
Peak: 27 - 
191 

    

NO2 40(80) 19 - 59 (42 - 
159) 

      

PM10 60(100) (TSP)  
126-336 
(215-1056) 

      

CA - Canada; IN - India; UK - United Kingdom 
1
 Canada: Canadian Environmental Quality Guidelines (http://ceqg-rcqe.ccme.ca/) 

2
 UK: http://www.environment-agency.gov.uk 

3
 Europe: http://ec.europa.eu/environment/air/quality/standards.htm 

4
 India: India Air Quality Guidelines (http://cpcb.nic.in/National_Ambient_Air_Quality_Standards.php) 

http://ceqg-rcqe.ccme.ca/
http://www.environment-agency.gov.uk/
http://ec.europa.eu/environment/air/quality/standards.htm
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Figure 3.6        Heavy metal concentrations (μg g
−1

 dry wt) relative to the Indian safe limit in edible parts of 

vegetables grown outdoors in Udaipur, Rajasthan (adapted from Table 5, Pandey & Pandey 
(2009a)); Concentrations relative to the safe limit as per the Prevention of Food Adulteration 
Act 1954. 

3.4 Effects on vegetation 

This section provides data describing site-specific pollutant effects on vegetation. Data were searched 

for using a variety of search terms that included the pollutant, the countries of the South Asian region 

and a reference to vegetation damage. These searches only found site-specific data for O3 (Table 

3.3) and heavy metal (Table 3.4) impacts. The tables provide details of the study reference, the 

pollutant in question, the site location, the land use type (e.g. field, forest, proximity to road traffic 

highways etc.), the year the study was performed, the plant species investigated, the pollutant 

concentration levels involved in the study, the plant response (damage parameter and magnitude) 

and any other information that was considered relevant. 

3.4.1 Ozone impacts 

Food security of many countries of South Asia is under threat due to the rapidly increasing population, 

industrialisation and economic growth. In Asia there are currently no air quality standards to protect 

agriculture from ground level O3. Knowledge on the impacts of O3 on crops in South Asia was recently 

presented in Mills and Harmens (2011) and updated here. From studies mainly conducted in Europe 

and the USA, it is clear that many of the staple foods in the region are either sensitive or moderately 

sensitive to O3, including maize, rice, soybean and wheat (Mills et al., 2007). The majority of studies 

conducted in South-East Asia report on the impacts on crop yield, although some studies also report 

on visible leaf injury. For example, Ahmad et al. (2013) reported 30-70% foliar injury to crop species 

(onion, potato, cotton) in Pakistan. Agrawal (2006) reported an increase in leaf injury from 8 to ca. 

30% on tobacco along a transect away from the urban area of Varanasi, India. Evidence of the 

impacts of O3 on crop yield in South-East Asia is mainly available from chemical protectant and air 

filtration and fumigation studies (Mills and Harmens, 2011). Data show that in India and Pakistan yield 

losses due to O3 are frequently in the range of 10 to 20%, and occasionally more than 50% (Mills and 

Harmens, 2011). It should be noted that most of these studies were conducted at one site in India 

(Varanasi) and one site in Pakistan, close to Lahore. With O3 concentrations predicted to rise in the 

future in South-East Asia, higher yield reductions are to be expected (see Section 3.3.1). 

Since the Mills and Harmens (2011) report, most new experimental studies of O3 impacts are from 

India and use filtration open top chamber (OTC) methods investigating a range of grain and vegetable 

crop species (rice, mustard seed, linseed, wheat, vegetables; Table 3.3). The results broadly agree 

with global modelling assessments of estimated O3 damage to crops, showing reduced yield and seed 

quality with higher O3 concentrations. Yield reductions of 20-35% have been recorded across species 

when comparing yield under ‘clean’ (filtered) air with ambient O3 concentrations (Table 3.3). It was 

also found that increasing CO2 concentrations mitigate the impact of O3 (Singh et al., 2013; Mishra et 

al., 2013). A 40-50% reduction in oil production was recorded in linseed (Tripathi and Agrawal, 2013); 
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in mustard seeds, Singh et al. (2013) recorded a 20% reduction in oil content and 8% reduction in 

protein, which was enhanced by higher CO2 concentration. 

Modelling-based studies to assess the extent and magnitude of O3 risk to agriculture in Asia suggest 

that yield losses of 5–20% for important crops may be common in areas experiencing elevated O3 

concentrations (Mills and Harmens, 2011). Using a concentration-based approach, the highest 

relative yield losses for wheat are observed in India and China: present day losses for wheat are 

possibly up to 19% for China and 28% for India (Van Dingenen et al., 2009). The relative losses for 

rice is significantly higher in India (6–8%) than in the other regions (<5%). For soybean, high relative 

losses are found in China (11–21%). In terms of weight, wheat is by far the most affected crop: Van 

Dingenen et al. (2009) estimate a possible loss between 45 and 82 million metric tons globally, of 

which 30% occurs in India and 25% in China. Production losses for rice, maize and soybean are of 

the order 17–23 million metric tons globally. India and China account for 47% and 37% respectively of 

the rice production losses. The high losses obtained for India have to be considered with care, 

considering the large discrepancy between modelled and measured ozone concentrations in 

Southern India. Present day economic losses for China and India are estimated between $3 and $6 

billion each. China and India each account for about 20% of the global economic damage. In many 

South-East Asian countries the relative yield losses are predicted to rise by 2030 (Van Dingenen et 

al., 2009). 

The above-mentioned assessments have relied on European and North American dose–response 

relationships based on AOT40 and hence assumed an equivalent Asian crop response to O3 for local 

cultivars, pollutant conditions and climate. However, comparison of the Asian data with European and 

North American dose-response relationships show that, almost without exception, Asian crops have a 

higher sensitivity to equivalent O3 concentrations. Hence, Asian crop yield and economic loss 

assessments made using North American or similar European based dose-response relationships 

may underestimate the damage caused by ozone (Emberson et al., 2009). As such, there is an urgent 

need for co-ordinated experimental field campaigns to assess the effects of ozone across South-East 

Asia (and the rest of Asia) to allow the development of dose-response relationships for Asian cultivars 

and growing conditions leading to improved quantification of current and future impacts. 

Tang et al. (2013) compared the flux-based and AOT40 based approach, using both European and 

Asian parameterisations (see Section 3.3.1 and Figure 3.3). They estimated relative yield loss (RYL) 

of wheat in 2000 to be 6.4–14.9% for China and 8.2–22.3% for India. POD6 predicted greater RYL, 

especially for the warm regions of India, whereas the 90 days AOT40 gave the lowest estimates. For 

the future projection, all the O3 dose metrics gave comparable estimates of an increase in RYL from 

2000 to 2020 in the range 8.1–9.4% and 5.4–7.7% for China and India, respectively. The lower 

projected increase in RYL for India may be due to conservative estimation of the emission increase in 

2020. Sensitivity tests of the model showed that the PODY-based estimates of RYL are highly 

sensitive to perturbations in the meteorological inputs, but that the estimated increase in RYL from 

2000 to 2020 is much more robust. The projected increase in wheat production loss in China and 

India in the near future is substantially larger than the uncertainties in the estimation and indicates an 

urgent need for curbing the rapid increase in surface O3 concentrations in this region. 

3.4.2 Heavy metal impacts 

While many heavy metals are essential nutrients to plant growth in small quantities, they are toxic at 

many of the higher concentrations reported in soils across South Asia (Table 3.4), inhibiting growth, 

causing chlorosis, and in some cases death (Nagajyoti et al., 2010). Laboratory-based growth 

experiments in India have shown: 

 Reduced growth and increased free radical production at Zn concentrations higher than 5mM 

(Prasad et al., 1999);  

 Similar effects for Cd with 40% reduction in chlorophyll at 100 µM concentration (Somashekaraiah 

et al., 1992);  

 Increasing concentrations of Pb (10
-6

M - 0.1M) caused significant reduction in percentage 

germination, shoot and root length, biomass production, and increasing inhibition of chlorophyll 

and protein synthesis; concentrations above 0.01M were lethal (Datta et al., 2009). 
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Observational studies of growth response to airborne heavy metal contamination found reduced  

chlorophyll a but often increased protein levels in lichen in India (Bajpai et al., 2010b; Majumder et al., 

2012; Shukla and Upreti, 2007), and stunted growth in medicinal plants in Pakistan (Hussain et al., 

2005). In sewage-sludge irrigated soils in India added Cd contamination above critical levels (25 mg 

kg
-1

 soil) reduced yield by 20 - 54% in biomass produced for spinach, radish, coriander and fenugreek 

(Mani et al., 2012). Added Pb had marginal impact on yield. The added Cd also reduced sugar and 

vitamin C content of the vegetables significantly, and the leaves bioaccumulated up to 30% of the Cd 

concentration in the soil. Pb has marginal impact on vitamin C and sugar content, slightly increasing 

the sugar level under high Pb concentration. The accumulation of heavy metals in soils from air 

deposition affects plant growth, by disrupting the soil chemistry and microbial activities (Pandey and 

Pandey, 2009a, 2009b).  

A number of studies investigated the role that different species could play as biomonitors. Species 

found useful for biomonitoring of heavy metal concentrations in South Asia include: lichens (Bajpai et 

al., 2010b; Saxena et al., 2008c); mosses (Saxena et al., 2008a,b,c; Conocarpus erectus (Gholami et 

al., 2013); pollen (Kalbande et al., 2007) or cypress, silky oak or bottlebrush (Gautam et al., 2005). 

Tolerant species that can be used as bioaccumulators to clean the air in urban centres have also 

been identified in the literature and include different species of plane trees (Pourkhabbaz et al., 2010) 

as well as Morus alba, Fraxinus excesior, Cupressus sempervirens and Ligustrum ovalifolium (Amini 

et al., 2011). 

3.4.3 Nitrogen and sulphur impacts 

Hardly any data describing site-specific effects of N deposition were found in the literature. The 

exception was a study that found a significant reduction in chlorophyll and sugar content in trees, 

correlated to levels of air pollution from a coal fired power plant in Uttar Pradesh. The main air 

pollutant at this location was SO2, but significant concentrations of NO2 and particulate matter were 

also measured (Sharma and Tripathi, 2009). Maximum reductions of chlorophyll of 40-55% occurred 

in winter, when SO2 and NO2 concentrations were highest, and minimum reductions of 20-40% in the 

rainy season.  

3.4.4 Aerosol impacts 

Both direct and indirect effects of atmospheric aerosols on vegetation have been reported. Direct 

effects include a blocking of leaf pores (stomata) due to larger aerosols (Krajívcková and Mejstvrik, 

1984; Kulshreshtha et al., 1994) and a change in the quantity and quality of solar radiation reaching 

the plant canopy (Steiner and Chameides, 2005). This second effect is of higher importance and 

consists of the scattering and/or absorption of solar radiation due to the aerosol loading as well as the 

alteration of cloud properties (Penner et al., 2001), both of which reduce the solar radiation and 

photosynthetically active radiation (PAR) reaching the plant surface (Moon et al., 2009; Mercado et 

al., 2009) while at the same time increasing its diffuse fraction (Twomey, 1977; Schwartz, 1996). The 

blocking of stomata can have contrasting effects on the photosynthetic activity of plants depending on 

the type of aerosols and plant species (Yamaguchi et al., 2014). However, the reduction in total solar 

radiation/PAR usually reduces photosynthetic activity (Mercado et al., 2009; Jing et al., 2010), while 

the increase in the diffuse fraction of solar radiation/PAR leads to an increased photosynthetic rate 

(Mercado et al., 2009; Zheng et al., 2010). Indirect effects are mainly associated with a change in the 

regional climate with knock-on effects on plant growth and yield. Rajeev and Ramanathan (2001) and 

Meehl et al. (2008) showed that aerosols might have an effect on the South Asian summer monsoon 

due to a change in the dynamics of the atmosphere. In addition, Takemura (2005) reported a negative 

effect of anthropogenic aerosols on the precipitation amount through a change in cloud formation. 

These findings are backed by an earlier study that showed how tropical aerosols can slow down the 

hydrological cycle (Satheesh and Ramanathan, 2000).  
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Table 3.3  Observed vegetation responses to surface ozone concentrations in South-East Asia, updated from the review included in Mills and Harmens (2011).  

Ref Pollutant 
 
(year) 

Location Type of study  Species Concentration 
(averaging details) 

Response Other comments 

Ahmad et al., 2013 Ozone 
 
(2008) 

Peshawar, 
Pakistan (8-
12km from city) 

Observed 
injury and 
open top 
chamber (OTC) 

onion (A. cepa),  
potato 
(Solanum 
tuberosum),  
cotton 
(Gossypium 
hirsutum) 

36ppb (average of the 
overall mean summer 
concentrations of 2 
sites) 

30-70% foliar injury to all species Spinach showed little/no 
effects of ozone - it is 
grown in winter when O3 
conc is lower; more studies 
needed to confirm that 
damage is from O3 

Kumari et al., 2013 Ozone + CO2 

 

(Dec 2008 - 
Jan 2009)   

Varanasi, India OTC palak (Beta 
vulgaris L. var 
Allgreen) 

Overall mean: 53 ppb 
(8hr daily range 36.5 - 
65.8 ppb) 

Yield reduction: 
NF:CF = 21.5%  
EO:NF = 25%  
EO:CF = 41.1%  

Elevated CO2 mitigated 
impact of elevated O3  

Tripathi and 
Agrawal, 2013 
 
 
Note: no filtered 
treatment, so no 
measure of yield 
without O3 impact 

Ozone + sUV-
B 
 
(Dec 2007 - 
Mar 2008) 

Varanasi, India OTC linseed (Linum 
usitatissimum 
L., Linaceae) 
varieties 
Padmini and T-
397 

Overall mean (NF) ppb: 
50.3 
EO (+10ppb) 
Mean monthly range: 
27.7 ppb - 59.04 

Yield reduction (# seeds plant
-1

): 
Padmini 
EO:NF = 20% 
T-397 
EO:NF = 36% 
 
(also e.g. about 40-50% drop in oil 
content with high O3 treatment) 

sUV-B had greater negative 
impact on yield than high 
O3; combined sUV-B + high 
Os had least negative 
impact; 
Also give impact on seed 
and oil properties 

Singh et al., 2013 Ozone and 
CO2 

 

(Winter 
2009/10 and 
2010/11) 

New Delhi, 
India 

OTC 
 
CF: 80-85% less 
than ambient 
O3 
NF: 5-10% less  
EO: NF+25-
35ppb O3 
EO+CO2: 
EO+500±50 
ppm CO2  
AC: 
chamberless 
air control 

Indian mustard 
(Brassica 
juncea (L.) 
Czern.) 

Average daily 
concentration for entire 
crop growth period in 
ambient air: 28ppb 
(2009/10) and 33 ppb 
(2010/11); max daily 
ambient 65 ppb in late 
Oct 2009 

- O3 decreased photosynthesis - by 
17.6-28% in EO relative to NF: 
- EO slows flowering (4 days 
longer), but speeds maturation (7-8 
days earlier); and reduce yield 23-
26% relative to NF;  
- CO2 mitigates the negative impact 
of ambient O3 on photosynthesis 
and yield - NF+CO2 is increased 
almost to CF levels; 
- oil content reduced by O3: 
NF:CF 9% 
EO:NF 18-20% 
EO+CO2:NF 8.5 - 10% 

Ozone reduces nutrient 
value of seeds 
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Ref Pollutant 
 
(year) 

Location Type of study  Species Concentration 
(averaging details) 

Response Other comments 

- protein content reduced by O3: 
EO:NF 7-8% 
NF:CF 13-15% inc 
CO2 enhances protein loss - 
EO+CO2:NF 12-17% 

Sarkar and 
Agrawal, 2012 

Ozone 
 
(Jun - Oct 
2007) 

Varanasi, India OTC Indian 
rice (Oryza 
sativa L., 
cultivars 
Malviya dhan 
36 and Shivani) 

Mean monthly ppb: 
41.3 - 59.9 
(June: 42.7; 
July: 41.3; 
Aug: 44.7; 
Sept: 58.2;  
Oct: 59.9 ) 

Yield reduction (weight of grains): 
Malviya dhan 
NF:CF = 14.3% 
EO++:NF = 28.4% 
EO++:CF = 38.7% 
Shivani 
NF:CF = 12.6% 
EO++:NF = 36.3% 
EO++:CF = 44.4% 

Two levels of increased O3 
tested (+10ppb and 
+20ppb). Yield reductions 
calculated for +20ppb 

Singh et al., 2012 Ozone 
 
(Nov 2007 - 
Mar 2008) 

Varanasi, India OTC mustard (B. 
campestris L.) 
varieties 
Vardan and 
Aashirwad 

12 mean ppb: 
CF: 3.4 
NF: 44.6 
OP: 45 
Monthly means in NF 
(Peaks):  
Nov: 41.6 (90),  
Dec: 27.7 (73),  
Jan: 46.3 (64),  
Feb: 48.6 (96), 
Mar: 59.04 (121) 

Yield reduction (at RNPK): 
Vardan 
NF:CF = 7% 
Aashirwad 
NF:CF = 19.4% 

No significant reduction at 
1.5 RNPK (1.5 times the 
recommended NPK rate). 
Other growth parameters 
also measured 

Tripathi and 
Agrawal, 2012 
 
 
Note: no filtered 
treatment, so no 
measure of yield 
without O3 impact 

Ozone 
 
(Nov 2010 - 
Mar 2011) 

Varanasi, India 
 
 

OTC Brassica 
campestris  L. 
(cv.Sanjukta 
and Vardan) 

Overall mean ambient 
(NF) ppb: 49.4 
EO: ambient + 10ppb 
Daily mean ppb range: 
26.3 (Jan) - 69.5 (Mar) 

Yield reduction (# seeds plant
-1

): 
Sanjukta 
EO:NF = 41% 
Vardan 
EO:NF = 46% 

Accumulated AOT40 was 
7371 ppbh during whole 
growth period of plant. 
 

Bhatia et al., 2011 Ozone 
 
(2007 and 
2008) 

Indian 
Agricultural 
Research 
Institute (IARI), 

OTC Indian rice 
variety Pusa 
Sugandh-5 (PS-
5) 

Mean monthly O3 (ppb, 
mean of two daily 
readings)  
CF: < 5ppb 

2007: 
NF:CF = 14.4% dec yield 
EO:NF = 11.4% dec yield 
2008: 
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Ref Pollutant 
 
(year) 

Location Type of study  Species Concentration 
(averaging details) 

Response Other comments 

 New Delhi 
 
 
 

EO: 59.1±4.2 ppb 
(2007); 69.7 ± 3.9 ppb 
(2008) 
NF: 26.2 ± 1.9 ppb 
(2007); 37.2 ± 2.5 ppb 
(2008) 
AA:  

NF:CF = 17.9% dec yield 
EO:NF = 12.3% dec yield  

Rai et al., 2011 Ozone Varanasi, India OTC Wheat 
(Triticum 
aestivum L.) 
cultivar 
M 533 

Overall daily mean for 
study period (ppb): 45.1 
Overall daily mean for 
reproductive phase 
(ppb): 50.2 
CF: 88% reduction cf NF 

O3 reduces net photosynthetic rate 
and gs during reproductive phase, 
impacting the assimilates required 
for grain-filling, suggesting 
significant negative repercussions 
for grain yield 

 

Tiwari and 
Agrawal, 2011 

Ozone 
 
(Jan-Mar 
2006) 

Varanasi, India 
 
 

OTC Radish 
(Raphnus 
sativus L. var. 
Pusa Reshmi) 
and brinjal 
(Solanum 
melongena L. 
var. Pusa 
hybrid-6) 

Eight hourly mean 
concentration: 
NF: 40.8 ppb 

Radish: 
18.8% reduced Ps; 54.7% reduced 
Cs; 20.8% reduced WUE 
Brinjal: 
32% reduced Ps; 26.7% reduced Cs; 
17.6% reduced WUE 

Radish is more sensitive to 
ozone stress than brinjal 
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Table 3.4 Observed vegetation responses to heavy metals in South-East Asia. 

Ref Pollutant Location Type of study 
(e.g. obser, 
exp (fum, filt 
etc.) 

Species Concentration 
(averaging details) 

Response Other comments 

Rajesh Bajpai et 

al., 2010b 

Al, Cr, Fe, 
Pb, Zn 
 
(2008) 

Firoz Gandhi 
Unchahar 
National 
Thermal 
Power Plant 
Corporation 
(FGUNTPC), 
Raebareli, 
Uttar Pradesh 
 
 

observation Lichen (P. 
cocoes) 

Min - max 
concentrations (µg g

-

1
 dry weight, 15km - 

5km from source): 
Fe: 206-1500 
Al: 297 - 1630 
Cr: 0.93 - 12.1 
Cu: 0.9 - 9.9 
Ni: 0.6 - 18.3 
Pb: 0.5 - 9.3 
Zn: 7.8 - 60 

Reduced chlorophyll a 
concentration by up to 99%; 
up to 97.5% reduction in 
chlorophyll b; up to 80% 
reduction in total 
chlorophyll; protein and 
carotenoids increased 

The lichen P. cocoes was 
found to be a good 
accumulator and therefore 
useful for biomonitoring 

Mani et al., 2012 Cd and Pb Allahabad, 
India 

Field 
experiment  

Spinach 
Radish 
Coriander 
Fenugreek 

Concentrations 
added to soil: 
Cd: 25 & 50 mg kg

-1
  

Pb: 250 & 500 mg kg
-

1
 

1) Yield reduction (min-max 
across species): 
Cd: 23-54% , root growth 
inhibited 
Pb: marginal decrease 
2) Vit C and sugar content: 
Cd (50mg kg

-1
): 

Up to 67% reduction 
Cd 50 + Pb 500 mg kg

-1
: 

slightly less reduction, up to 
60%; but mostly Pb (500 mg 
kg

-1
)  addition increased 

sugar content 

Cd above critical level (25mg 
kg

-1
 soil) impacts growth and 

nutritional quality 
significantly. Pb even at 
higher doses has much less 
impact; leafy vegetables can 
bioaccumulate up to 30% of 
added soil Cd in leaves, and 
at low Cd but high Pb up to 
65% of added soil Cd; very 
little bioaccumulation of Pb 

Hussain et al., 
2005 

Cd, Cr, Pb, 
Cu, Mn, Zn, 
Fe 

Peshawar, 
Pakistan  

observation Milk thistle 
(Silybum 
marianum) 

4 - 2 - 0km from 
source (mg kg

-1
)  in 

leaves: 
Pb: 0.2; 0.02; 0.02 
Cr: 0.09; 0.94; 0.79 
Cd: not detected 

32% reduced height, 10% 
reduced weight in plants at 
polluted site than 4km away 
(control);  

Heavy metals accumulated in 
different amounts in various 
plant parts (roots, leaves, 
seeds, oil) and not always 
highest at pollution source 
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Ref Pollutant Location Type of study 
(e.g. obser, 
exp (fum, filt 
etc.) 

Species Concentration 
(averaging details) 

Response Other comments 

Fe: 18.23; 59.85; 
62.24 
Cu: 0.25; 0.49; 0.72 
Mn: 1.9; 5.84; 5.68 
Zn: 0.97; 2.24; 1.46 
Ni: 0.16; 0.43; 0.13 

Mohsenzadeh et 
al., 2011 and 
Yousefi et al., 
2009 

Zn, Mn, Pb 
and Fe 

Hamedan, 
Iran 

observation Reseda lutea 
and 
Chenopodiu
m botrys L. 

Mean soil 
concentration (mg 
kg

-1
): 

Zn: 2672 
Mn: 827 
Pb: 8490 
Fe: 9299 

1) Abnormal pollen 
formation - thicker walls, 
irregular formation; 
2) new proteins found in 
roots 

Changes in polluted plants 
may be adaptations to toxic 
levels of metals 

Prasad et al., 
1999 

Zn Delhi, India Growth 
experiment 

Brassica 
juncea 

Added concentration 
of zinc sulphate: 
0.007, 0.05, 5 and 10 
mM 

Up to 0.05mM promoted 
growth; above 5mM 
significantly reduced growth, 
accelerated free radical 
generation 

Increased enzyme activity 
towards detoxification 
stimulated by toxic Zn levels 

Datta et al., 
2009 

Pb India Growth 
experiment 

five wheat 
(Triticum 
aestivum L.) 
cultivars 
(HW 2045, 
HD 2733, 
KO307, KO 
402 and HD 
2954) 

Added Pb 
concentration: 0.1M 
- 10

-6
M 

-significant reduction in % 
germination, shoot and root 
length, biomass production; 
Increasing inhibition of 
chlorophyll and protein 
synthesis 

0.1M and 0.01M were lethal 
to germination and growth 

Somashekaraiah 
et al., 1992 

Cd India Growth 
experiment 

Mung bean 
(Phaseolus 
vulgaris) 

Added Cd
2+

 
concentration:  
10, 50, 100µM  

52% increase in lipoxygenase 
activity (indicates free radical 
production and tissue 
damage); 
40% reduction in chlorophyll 
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Ref Pollutant Location Type of study 
(e.g. obser, 
exp (fum, filt 
etc.) 

Species Concentration 
(averaging details) 

Response Other comments 

production at 100 µM, 6DAG 

Majumder et al., 
2012 

Fe, Cr, Cu, 
Zn, and Pb 

Kolkata, India observation Lichen F. 
caperata (L.) 
Hale 

Mean site values 
(min-max) of 5 
replicates per site: 
Fe: 1,970 to 3,981 
mgkg

−1
;  

Reduction in chlorophyll a 
with increase in Fe, Pb, Cu; 
MDA (membrane lipid 
peroxidation) increase with 
higher Cr, Fe, Pb; no 
significant difference in 
electrical conductivity (cell 
injury), but related to Fe, Cu, 
Pb; Zn not influencing any 
physiology 

Lichen seen to be an efficient 
accumulator of Pb;  
 
Other lichen studies: 
(Shukla and Upreti, 2007) 

Ishaq et al., 2013 Fe, Zn, Mn, Ni, 
Cr, Cd and Pb 

Khyber 
Pakhtunkhwa, 
Pakistan 

observation Herbal drug 
sreen 
(Albizia 
lebbeck) 

Min - max (ppm) in 
soil across sites (no 
clear gradient): 
Fe: 19.05-60.03 
Zn: 32.95-59.00 
Mn: 8.94-28.28 
Ni: 4.21-18.01 
Pb: 4.23-16.24 
Cr: 1.84-2.95 
Cd: 0-1.89 
 
Min - max (ppm) in 
plant across sites (no 
clear gradient): 
Fe: 2.36-45.10 
Zn: 2.39-31.25 
Mn: 1.03-23.89 
Ni: 1.05-5.08 
Pb: 0.74-12.19 
Cr: 0.07-1.10 
Cd: 0-0.41 

 Fe and Zn may be soil 
contamination; Mn both soil 
and air contamination - also 
below critical limits; Ni likely 
soil contamination from 
wastewater; Pb from traffic 
emissions - max levels exceed 
WHO limit of 10 ppm; Cr 
from air dust - far exceed 
FDA limit of 0.12 ppm; Cd 
from soil and air - max far 
exceed WHO limit of 0.3 ppm 
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Ref Pollutant Location Type of study 
(e.g. obser, 
exp (fum, filt 
etc.) 

Species Concentration 
(averaging details) 

Response Other comments 

Khillare et al., 
2012 

Cd, Cu, Cr, 
Ni, Zn, Fe 
and Mn 
 
(Jan, Jun, 
Aug 2009) 

Delhi, India 
 
 

observation Radish (root 
veg), spinach 
(leaf veg), 
cowpea 
(legume 
vege), bottle 
gourd (fruit 
veg), bitter 
gourd (fruit 
veg) and 
ridge gourd 
(fruit veg) 

  significant seasonal variations 
in foliar metal 
concentrations; 42%, 68% 
and 33% of the total samples 
exceeded the permissible 
levels of Cd, Ni and Zn, but 
gourd vegetables  

Pourkhabbaz et 
al., 2010 

Pb, Zn, Ni, 
Co, Cr, Cu 
 
(May & Sept 
2004 and 
2005) 

Mashad, Iran 
 
 

observation Plane trees 
(Platanus 
orientalis) 

Means of 10 leaves 
per site (Urb - Rur) 
(µg g

-1
):  

Pb: 4.5 - 1.9 
Zn: 76.8-78.7 
Ni: 4.2 - 4.4 
Co: 0.3 - 0.4 
Cr: 2.4 - 1.7 
Cu: 13 - 14.5 
Means of 4 air 
samples per site (Urb 
- Rur) (ng m

-3
):  

Pb: 98.2 - 7.5 
Zn: 4.8 - 2.0 
Ni: 31.2 - 24.0 
Co: 2.3 - 0.7 
Cr: 49.6 - 9.3 
Cu: 42 - 44.2 

Leaf area, stomatal density, 
stomatal pore width and 
cuticle thickness all reduced 
in urban vs rural site by 16%, 
28%, 31% and 32% 
respectively 

Results show that plane trees 
can cope with pollution and 
therefore suitable to 
megacities 

Pandey, 2005 HF, SO2, TSP  
 

Udaipur, 
Rajasthan, 

Pot-cultured 
transplants to 

Cassia 
fistula, 

Annual 24hr average 
concentrations in 

Significant stunting, reduced 
growth with higher 

P. guajava most resilient, C. 
fistula most sensitive; 
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Ref Pollutant Location Type of study 
(e.g. obser, 
exp (fum, filt 
etc.) 

Species Concentration 
(averaging details) 

Response Other comments 

(2000-2001) India siteas around 
factory 
(pollutant 
source)  

Psidium 
guajava and 
Carissa 
carandas 

2000 (µg m
-3

 min-
max with distance 
from factory): 
HF: 0.2 - 3.5 
SO2: 15 - 86 
TSP: 175 - 352 

Emissions: e.g. up to 66% 
reduced height; foliar injury 
in 2

nd
 year only, 17-21% leaf 

area damaged; mean relative 
growth rate reduced 
significantly  

Impacts mainly from HF 

Pandey and 
Pandey, 1994 

SO2, NOs, O3, 
TSP 
 
(Jan 1989 - 
Dec 1990) 

Varanasi, 
India 

Observation Mangifera 
indica L. 
Psidium 
guajava L. 
Delonix regia 
Rafin 
Peltophorum 
pterocarpum 
Dalbergia 
sissoo Roxb 
Bougainville
a spectabilis, 
Wild 
Carissa 
carandas L 

Annual 24hr average 
concentrations in 
1990 (µg m

-3
 min-

max across pollution 
zones) 
SO2: 15 - 79 
NOs: 19 - 59 
O3: 16 - 48 
TSP: 126-336 
2hr peak 
concentrations in 
1990 (µg m

-3
 min-

max across pollution 
zones) 
SO2: 39 - 238 
NOs: 42 - 159 
O3: 30 - 149 
TSP: 215-1056 

Foliar injury (highest in 
winter):  
6 - 19% across species in 
highest pollution zone vs 3 - 
9% in lowest zone; 
Up to 31 % and 36% reduced 
leaf area and specific leaf 
weight (C carandas); 
reduction in chlorophyll, esp 
chlorophyll a: 35 - 58% dec in 
total chloroph. 

C carandas is most sensitive, 

Bougainvillea is most tolerant 
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4. Conclusions and recommendations 

Harry Harmens, Gina Mills 
 
In this report we have provided a review on the current state of knowledge on the deposition of air 

pollutants to and impacts on vegetation in Eastern Europe, Caucasus and Central Asia (EECCA), 

South-East Europe (SEE) and South-East Asia. In these regions, there is generally a lack of a 

network of monitoring stations to assess the magnitude of air concentrations and depositions of 

pollutants. In addition, emission inventories are often incomplete or not reported at all for some 

pollutants, which makes it difficult to validate atmospheric transport models for these regions. 

Furthermore, there is a lack of coordinated monitoring networks to assess the impacts of air pollution 

on vegetation. Hence, the risk of adverse impacts on vegetation often has to be assessed using 

atmospheric transport models in conjunction with metrics developed to compute the risk of air 

pollution impacts on vegetation in Europe, such as critical loads and levels. Here we have focussed 

on the following air pollutants: nitrogen, ozone, heavy metals, POPs (EECCA/SEE countries) and 

aerosols, including black carbon as a component (South-East Asia). 

4.1 Conclusions 

4.1.1 Eastern Europe, Caucasus and Central Asia (EECCA) 

Currently, for EECCA countries information on critical load exceedances for nutrient N is only 

available for a limited number of countries. Although the percentage area of exceedance is predicted 

not to change much between 2005 and 2020, the magnitude of exceedance is predicted to be 

reduced by 14 (Belarus) to 33% (Russian Federation) in 2020 compared to 2005, assuming full 

implementation of the revised Gothenburg Protocol. For modelling risks of adverse impacts of O3 on 

vegetation, the concentration-based approach (AOT40) identifies the southern part of the EECCA 

region at highest risk, whereas the biologically more relevant flux-based approach (PODY) identifies 

the south-western part of the region bordering with Central Europe at highest risk. Both approaches 

identify the northern part of the region at lowest risk of adverse impacts from ozone pollution. In 2011, 

the highest levels of heavy metal deposition were computed for the south-western part (the Ukraine, 

Belarus, Caucasus), some eastern parts of the Russian Federation and the south-eastern 

(Kyrgyzstan, Tajikistan) parts of the EECCA region. As for the rest of Europe, in most EECCA 

countries heavy metal deposition has declined between 1990 and 2011 for Cd, Pb and Hg, with the 

highest reductions being computed for Pb. Reductions comparable to the rest of Europe were only 

computed for the western part of the EECCA region (Ukraine, Moldova, Belarus, Russian Federation) 

and for Pb in Kazakhstan, Uzbekistan, Turkmenistan, Kyrgyzstan and Tajikistan. Otherwise, lower 

reductions were reported for EECCA countries compared to the rest of Europe. Heavy metal 

concentrations in mosses have only been reported for Belarus, Russian Federation and Ukraine and 

critical loads exceedance data have only been reported for Belarus, Moldova and Russian Federation. 

Almost no critical load exceedance for terrestrial ecosystems effects has been reported for Cd, but for 

Pb exceedances were reported for more than 40% of the area of the Russian Federation and the area 

of exceedance was 100% for Hg in 2010. Model assessment indicated reduction of POP pollution in 

most of the EECCA countries from 1990 to 2011, although generally lower than in the rest of Europe; 

highest reductions were observed in the western part of the region. In 2011, the highest deposition for 

B[a]P and PCDD were computed in the south-western part of the region, whereas HCB levels were 

high for large parts of the Russian Federation. 

4.1.2 South-East Europe (SEE) 

Compared with Western and Central Europe, computed critical load exceedances for nutrient N have 

historically been lower in SEE and this was also the case in 2010. However, large areas are still 

predicted to be exceeded in 2020 with improvements since 2005 generally being lower than in 

Western and Central Europe. N concentrations in mosses were found to be intermediate to high in 

SEE compared to other European countries, indicating potentially a higher risk of N effects on 

ecosystems than computed by the critical loads. Field-based evidence is available for O3 impacts 

particularly on crops in Greece and Slovenia, with many crops species showing visible leaf injury in 
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Greece. Both AOT40 and PODY are computed to be high in SEE, indicating that this area is at high 

risk of ozone damage to vegetation. Although heavy metal deposition has declined since 1990 in this 

region, the decline has generally been lower than for the rest of Europe. This might explain the 

relatively high concentrations of many heavy metals in mosses in countries in SEE Europe compared 

to the rest of Europe in recent years (Harmens et al., 2010; 2013c). Another explanation could be the 

amount of wind-re-suspension of historically deposited heavy metal in this more arid part of Europe, 

as indicated by high levels of iron and aluminium concentrations in mosses in this region. High critical 

load exceedances have been reported for Macedonia for Cd and Pb and for Bosnia-Herzegovina for 

Pb. Widespread exceedance of the critical load for Hg has been observed in this region, similar as for 

the rest of Europe. Model assessment indicated reduction of POP pollution in most of the SEE 

countries from 1990 to 2011, particularly for HCB, although generally lower than in the rest of Europe. 

Increases in B[a]P were computed for Serbia, Bulgaria and Greece.  

4.1.3 South-East Asia (SEA; Malé Declaration countries) 

Since the late 1990s, emissions of air pollutants have increased rapidly in Asia due to enhanced 

industrialisation, which is directly linked to continued strong economic growth of about 10% in China 

and India. Little information is available on N deposition and its impact on vegetation in SEA. 

According to Kulshrestha et al. (2005), dry deposition of gaseous ammonia is more important than its 

wet deposition in India. Staple food crops (maize, rice, soybean and wheat) are sensitive to 

moderately sensitive to O3, threatening global food security. Recent flux-based risk assessment of O3-

induced wheat yield loss show that the relative yield loss was 6.4-14.9% for China and 8.2-22.3% for 

India (Tang et al., 2013), with higher yield losses predicted for 2020, indicating the urgent need for 

curbing the rapid increase in surface O3 concentrations in this region. Yield reductions of 20-35% 

have been recorded for various crop species when comparing yield in clear air with current ambient 

O3 concentrations. South Asia is a region with high aerosol load compared to other regions, due its 

rapid growth and the arid climate. In particular the Indo-Gangetic Plain, South Asia’s most important 

agricultural region, persistently has very high aerosol load, reducing visibility as well as solar radiation 

reaching the surface. Reduced photosynthesis might occur as a result of reduced solar radiation and 

larger aerosols blocking leaf pores, although the increase in diffuse radiation might have the opposite 

effect. The deposition of many heavy metals onto fruit and vegetables across India has been found 

to exceed WHO and Indian national limits for safe consumption.  

4.2 Recommendations 

This review highlights the lack of monitoring data regarding the deposition to and impacts of air 

pollutants on vegetation in EECCA/SEE countries and South-East Asia. It would be desirable to 

further enlarge coordinated networks to measure air concentrations and depositions of air pollutants, 

i.e. to extend the EMEP monitoring network particularly in the EECCA region and establish a similar 

network in South-East Asia, for example by extending the Acid Deposition Monitoring Network in East 

Asia (EANET) by including other regions and more pollutants. International Cooperative Programmes 

might consider stimulating the development of coordinated networks in these regions with the aim to 

establish widespread monitoring networks assessing the impacts of air pollutants on ecosystems. 

More measurement data are urgently needed to validate model outputs regarding the concentrations, 

deposition and associated risk for impacts of air pollutants on vegetation. The successful 

implementation of air pollution abatement policies in many other parts of Europe has highlighted the 

slower progress made with some of the air pollution abatement in the Eastern Europe, the Caucasus, 

Central and South-East Asia. Improvement of air quality in these regions will also benefit the rest of 

Europe due to a reduction in long-range transport of air pollutants and their precursors, particularly 

those of hemispheric nature such as ozone and mercury. Many air pollution issues are remaining in 

the studied areas that require urgent attention, especially in regions of fast economic and population 

growth, ensuring future sustainable development without significant impacts on the functionality of 

ecosystems, the services they provide and food production.   
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Annex 1: Country reports 

Here we have included country reports from participants of the programme of the ICP Vegetation. The 

short reports summarise their research; the responsibility for their content lies with the participants. 

 

Country reports have been submitted by: 

 Albania 

 Croatia 

 Egypt (as outreach to North Africa) 

 Greece 

 Macedonia 

 Romania 

 Russian Federation 

 Serbia 

 Slovenia 
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Survey of atmospheric deposition of heavy metals in Albania using mosses 
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Background and aims the study 
Albania is a small county (28 000 km

2
) with a complex topography, climate, geology, and is 

characterized by high anthropogenic influences. The first study monitoring atmospheric deposition of 
metals using mosses in Albania was performed within the framework of the ICP Vegetation (Harmens 
et al., 2010). The main aim of this study is to express the spatial patterns of heavy metals distribution 
in mosses in 2010/11 in Albania and to identify the main polluted areas in the country. 
 
Materials and methods  
The carpet-forming mosses Hypnum cupressiforme and Pseudoscleropodium purum were collected 
according to the guidelines set out in the experimental protocol for the 2010/11 survey (ICP 
Vegetation, 2010). The distribution of the sampling sites throughout Albania was shown in a previous 
publication (Qarri et al., 2013). Ten elements (Al, As, Cd, Cr, Cu, Fe, Ni, Pb, V and Zn) were 
measured in moss samples collected from 62 sampling sites across Albania during the dry autumn 
and summer period of 2010 and 2011. The total digestion of moss samples was done according to 
the method presented by Barandovski et al. (2008). The quality of the data was checked by multiple 
analyses of samples and by analyzing the certified moss reference materials M2 and M3 (Steinnes et 
al., 1997; Harmens et al., 2010). 
 
Results and Discussions  
The 2010 data on the concentration of 10 elements in 62 moss samples from Albania are summarized 
below, using descriptive statistics (Table 1) and multivariate analysis (Pearson Correlation, Table 2).  
 
Table 1  Descriptive statistics of the element concentrations (mg/kg, DW) in mosses sampled (n=62) in 

Albania in 2010. 

The median values of Cr, Fe, Ni, V, Zn and Al are similar to those of neighbouring countries (Qarri et 
al. 2013), but higher than those of European countries (Harmens et.al. 2013). The highest values of 
these elements were measured near industrial centres (the central part of the country). To distinguish 
between lithogenic and anthropogenic origin of the elements in mosses, correlation analysis was 
carried out (Table 2). Good correlations (R

2
>0.5, P>0.001) were found between Fe and Cr, Ni, V, Al, 

which can be explained by their lithogenic (Fe-Al, V correlation) and geogenic (Fe-Cr, Ni correlation) 
origin.  
 
Aluminium, chromium, iron, nickel and vanadium  
The background level of Al in Albanian moss samples was higher than in other European countries 
(Harmens et al., 2013). The highest Al concentration was found in the south and in central part of 
Albania. The main contribution of Cr, Fe, Ni and V elements is coming from the Elbasan 
ferrochromium metallurgical plant (Lazo et al., 2013) and the mining industry in Albania. A high level 
of wind-blown dust occurs in the south and a high level (for most metals) of industrial activity is 
present in the mid-east of Albania. The association of Cr and Fe is also related to current air pollution 
(Lazo et al. 2013). Their highest concentration is present near the ferrochromium metallurgy in 
Elbasan town and chromites deposition areas of Albania. 
 
 

Parameters Fe Ni V Al Cr As Pb Cd Cu Zn 

Range 469–5488 1.6–131 1.15–16.9 535–6974 1.6–31.7 0.05–2.9 1.3–19.7 0.038–0.89 2.14–16 1.0–68 

Mean 1892 11.36 4.23 1958 6.38 0.541 3.28 0.17 6.07 14.06 

Median 1618 5.85 3.51 1638 4.75 0.305 2.41 0.107 5.58 13.8 

St dev. 1105 19.3 2.79 1178 5.39 0.64 3.21 0.16 2.8 11.6 
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Table 2  Pearson Correlation Coefficients between element concentrations in mosses in Albania in 2010. 

 

1
 P<0.001, 

2
 P<0.005, 

3
 P<0.01; bold – Pearson Correlation Coefficient > 0.50. 

 
Arsenic, cadmium, copper and zinc  
Arsenic concentrations in mosses were generally low in the western part and higher in eastern part of 
Albania, but lower than in neighbouring countries (Harmens et al., 2013). Cu, Cd and Zn 
concentrations were generally low in mosses sampled in Albania compared to many other European 
countries (Harmens et al., 2013). Road transport may have a considerable effect on the distribution of 
these elements in air pollution in Albania. 
 
Conclusions 
Moss biomonitoring provides a cheap, complementary method to deposition analysis for the 
identification of areas at risk from high atmospheric deposition fluxes of heavy metals. Based on the 
median distribution of Albanian data of moss survey 2010/2011 we suggest that the elements Zn, Cd, 
Cu, Pb and As do not reach high enough concentrations as a result of long-range atmospheric 
transport and deposition to cause adverse effects on terrestrial ecosystems. However, the elements 
Al, Fe, Cr, Ni and V appear to have the highest median values among European countries and this 
may result in effects on vegetation due to the accumulative nature of heavy metals in soils and 
vegetation. Soil dust, industry emissions, waste incineration and road traffic were identified as main 
factors causing air pollution from heavy metals in Albania.  
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Background 

Since 2006, Croatia has participated in the European moss survey. Moss samples were collected in 
2006 and 2010 on a nearly regular grid of 23 km x 23 km. Moss samples were collected during the 
summer of 2006 and summer/autumn of 2010 (Figure 1), from 98 and 121 locations respectively, 
evenly distributed over the country with additional samples taken in/around urban/industrial areas. 
The most dominant moss species were Hypnum cupressiforme, Pleurozium schreberi, Brachythecium 
rutabulum and Homalothecium sericeum. This study was undertaken in order to provide an 
assessment of air quality throughout Croatia and to generate information needed for better 
identification of local pollution sources as well as transboundary pollution, and improving the potential 
for assessing environmental and health risks in Croatia associated with dry and wet deposition of 
toxic metals. 
 

   

Figure 1  Locations of moss sampling sites in Croatia in 2006 (left) and 2010 (right). 

 

Metals, nitrogen & radionuclide concentrations in mosses  

Here we present the results obtained in the 2010 moss survey in Croatia and compare these results 

with those obtained in the previous survey in 2006, in order to evaluate spatial patterns and temporal 

deposition trends. As an example, the spatial pattern of Pb concentrations in mosses in 2010 is 

shown (Figure 2). The content of 21 elements was determined by ICP-AES and atomic absorption 

spectrometry (AAS). Principal component analysis (PCA) was applied in order to show association 

between the elements. Six factors (F1 to F6) were determined, of which two are anthropogenic (F3 

and F6), two are mixed geogenic-anthropogenic (F1 and F5) and two are geogenic factors (F2 and 

F4). In addition, 22 out of 121 representative moss samples were subjected to gamma-spectrometric 

analyses for assessing the activity of the naturally occurring radionuclides (data not shown). In 2010, 

the nitrogen concentration in mosses was determined for the first time using the Kjeldahl method 

(Figure 4). From data obtained in 2010 (Špirić et al., 2013), it can be concluded that the median 

values and ranges of all elements obtained in this study are very similar to the median values and 

ranges obtained in the previous study in 2006 (Špirić et al., 2012). Only a few elements (Cd, Cu, Mg, 

Ni and Pb) have a slightly higher median value (Table 1). For some typical anthropogenic elements 

such as Cr, Hg, V and Zn, lower median values were recorded in 2010.  
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Table 1       Comparison of the results of the 2006 and 2010 Croatian moss survey. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Figure 2  Distribution of Pb (left) and N concentrations (right) in mosses in 2010. 

 

Discussion and conclusion 

From the moss data it can be concluded that anthropogenic heavy metal pollution has not changed 
significantly in Croatia between 2006 and 2010. The main anthropogenic sources of heavy metals are 
light and heavy industry, transportation, steel industry, textile industry, thermoelectric plant and oil 
deposits and refineries whose activities are carried out near big industrialized cities such as Zagreb, 
Sisak, Rijeka, Kutina, Split and Sibenik. Moss samples collected near these regions showed the 
highest content of typical air pollution from heavy metals. In comparison with the results obtained in 
other European countries, it can be concluded that Croatia is more polluted than many parts of 
northern and western Europe, but less polluted than many of its neighbouring countries. There is a 
clear need to continue the moss survey in order to assess air quality throughout Croatia and to 
produce information needed for better identification of pollution sources and assessment of 
environmental and health risks associated with dry and wet deposition of toxic metals in Croatia. 
 
Špiric Z, Frontasyeva M, Steinnes E & Stafilov T (2012). Multi-element atmospheric deposition study in Croatia, International 

Journal of Environmental Analytical Chemistry 92: 1200-1214. 

Špiric, Z., Vuckovic, I., Stafilov, T., Kusan, V., & Frontasyeva, M. (2013). Air Pollution Study in Croatia Using Moss 
Biomonitoring and ICP–AES and AAS Analytical Techniques. Archives of Environmental Contamination and 
Toxicology 65: 33-46.  

 Croatia 2010 Croatia 2006  

No. of   samples n= 121 n= 94 

Element Median Range Median Range 

Ag 0.032 0.001-0.155 - - 

Al 878 112-4493 1350 398-2146 

As 0.36 0.05-1.00 0.37 0.10-6 

Ba 20.64 4.49-94.30 32 7-192 

Ca 6632 2649-20795 7623 2832-26740 

Cd 0.38 0.10-1.42 0.27 0.07-1.9 

Cr 1.94 0.41-8.55 2.8 0.76-33 

Cu 8.53 4.72-22.69 7.5 3.7-22.7 

Fe 789 85.00-4028 1000 320-12140 

Hg 0.043 0.010-0.145 0.064 0.007-0.301 

K 3891 1552-9279 8085 2565-23720 

Li 0.55 0.11-4.27 - - 

Mg 3059 1619-4740 2120 676-12740 

Mn 99.1 16.10-928 106 20-1421 

Na 120 65.00-304 169 67-2332 

Ni 3.16 1.04-14.66 2.7 0.66-18 

P 1134 419-3117 - - 

Pb 3.21 1.11-36.64 2.46 0.06-82.4 

Sr 16.00 4.74-54.03 21 4-125 

V 2.55 0.23-37.26 3.1 0.91-32 

Zn 24.80 11.64-77.13 29 12-283 
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Egypt* 

 
Samia Madkour, Damanhour University, Damanhour 

 
Lead institute: 1) The Egyptian Environmental Affairs Agency (EEAA), Ministry of State for Environmental  

                              Affairs (MSEA), Cairo, Egypt. www.eeaa.gov.eg [Ahmed Abou Elseoud, Air Quality Dept.]. 
                          2) National Research Center, El-Dokki, Cairo,Egypt. info@nrc.sci.eg . [Nasser M. Abdellatif, 
                              Air Pollution Department (Ozone + Heavy metals)] 
Collaborating Institute: Institute of Environmental Studies and Research, Ein-Shams University, Abbassia,  

             Cairo [Ibrahim M. El-Gamal (Heavy metals only)] 
 

Background 
Air pollution is one of the most important challenges and obstacles facing development in Egypt at 
present. Air pollution emissions pose an increasing threat to agriculture. High rates of consumption of 
fossil fuel caused by the extensive urbanization, industrial development and the increase in motorized 
vehicular traffic coupled with the rapid growth in population during the last few decades have 
enhanced the overall air pollution level. 

As the control of air pollution represents one of the primary concerns of the Ministry of State for 
Environmental Affairs (MSEA) and the Egyptian Environmental Affairs Agency (EEAA), continuous 
efforts are made for enforcing existing environmental legislation and dealing with the air quality 
problem (Law 4/1994 for the Environment and its amendment law 9/2009). Accordingly, a 
comprehensive national air quality monitoring system has been established as part of the 
Environmental Information and Monitoring Program (EIMP) of EEAA as a long-term commitment to 
this issue. The monitoring network started with 38 stations and was initially implemented with support 
from the Danish Government (MSEA/EEAA Air Quality Report, 2001). The monitoring system has 
been operational between the years 1998-2009, measuring concentrations of common air pollution 
parameters such as sulphur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), ozone 
(O3), particulate matter (PM10) and lead (Pb). This effort was carried out by monitoring stations 
distributed throughout the country. In 2001, EEAA took over full responsibility for the operation and 
maintenance of the system and the number of stations increased gradually to a total of 87 monitoring 
sites in 2007. This report will focus on O3, NO2 and Pb which have been known to have a great impact 
on agriculture and therefore have been the most studied. Despite the differences between the 
monitoring locations, levels of the ambient gaseous pollutants O3 (25-92 ppb) and NO2 (32-62 ppb) 
are high enough to have significant impacts on the growth and yield of local varieties of crops (Egypt 
State of the Environment Reports, 2008 & 2009).   

Egyptian agriculture is characterized by the limited cultivable area, mainly along the Nile banks and 
the Delta since the river is almost the single main source of irrigation water. The cultivated area 
represents 3.7% of the total area of Egypt (1 million km

2
). It is considered as one of the most intensive 

agricultural systems in the world. The agricultural surface unit is cultivated two or three times a year, 
thus, intensifying the harvested area 2-3 folds above the cultivated area. Economically important 
crops which are at risk from air pollution include cereals (e.g. wheat, maize & rice), fodder (clover & 
alfalfa), legumes (beans & lentil), fibre (cotton) and vegetables (e.g. tomato, potato & onion). 

 
Main air pollution problems 

Ozone. The increases in air pollution that have occurred around the urban industrial centres of Cairo 

and Alexandria in Egypt are particularly problematical since these are in the same location as the 
primary agricultural region, which is limited to the Nile river basin and the Delta. Studies of the effects 
of O3 pollution on vegetation have been carried out in the last 20 years in the greater Cairo area and 
around the main roads within the Nile Delta and Upper Egypt region. Temporal and spatial patterns 
were followed and recorded by the MSEA/EEAA. Results of these efforts are presented in Figure 1. 
Ozone levels recorded were consistently greater than the universally accepted 40ppb vegetation 
damage threshold. Hourly means of O3 further exceeded the above levels and reached 100 ppb or 
more depending on the site, the weather conditions and the season. Visible injuries included necrosis, 
black or red spots and chlorosis especially on bioindicator species such as Jew's mallow, white clover 
(60 % and 54% leaves injured respectively), lettuce and rocket (Madkour & Laurence, 2002).  

 
_________________________ 

* As outreach to North Africa 
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Figure 1   Temporal (left) and spatial (right) trends of the annual average ozone concentrations in Egypt. 

 

Controlled environmental studies aiming to determine the sensitivity of local Egyptian crops and 
cultivars to O3 were conducted since 1994. Sensitive species included radish and turnip (Hassan et 
al., 1995), common bean (Madkour, 1998 & Madkour et al., 2011), clover (El-Shamy and Madkour, 
2008) and tomato (Madkour and Abou Salem, 2014). 

The impact of O3 on the growth and yield of local varieties has been assessed. Plant biomass of 
radish (Raphanus sativus L. cv. Balady) and turnip (Brassica rapa L. cv. Sultani) were reduced at sub-
urban and rural sites in Alexandria. The study proved that levels of ambient O3 in Egypt are high 
enough to have significant impacts on the growth and yield of local varieties of vegetable crops, even 
at a time of the year when O3 levels are relatively low (Hassan et al., 1995). Open Top Chambers 
(OTC) experiments were conducted to study O3 effects on the yield of an Egyptian cultivar of wheat. 
Results showed that exposure to 61 ppb O3 caused 60% decrease in the total grain dry weight/plant 
and 20-48% decrease in other yield parameters (Hassan et al., 1999). O3-induced yield reductions 
have also been observed with other economically important crops. Estimated yield losses due to 
ozone exposure in the range 77-166 ppb at four different open field sites were proportional to the 
ozone level at each site. Reductions in yield of wheat (Triticum aestivum L. cv. Giza 68), broad bean 
(Vicia faba L. cv. Lara), kidney bean (Phaseoulus vulgaris L. cv. Giza 3) and pea (Pisum sativum L. 

Perfection) were 9-46%; 13-33%; 20-45%; 3-30% respectively (Ali et al., 2008). The combined impact 

of O3, NO2 and SO2 in ambient air were assessed using three cultivars of pea at urban (90 ppb O3, 24 
ppb NO2 & 30 ppb SO2) and rural (76 ppb O3, 12 ppb NO2 & 13 ppb SO2) sites in Sharkia Province 
north east of Egypt. Losses in growth and decrease in yield of pea plants reached 40% and 10% 
respectively, at the urban site and were less at rural sites (Ali, 2004).  

Nitrogen dioxide. Results of the air monitoring network (1999-2990, Figure 2) show that recorded 
NO2 concentrations in ambient air has always exceeded the maximum allowable standard set by the 
World Health Organization (40 μg/m3). It is noteworthy that this problem is not a new one, the 
increase in vehicle number in recent years led to a rise in the average annual concentrations of NO2. 
In addition, the expansion in using natural gas either in industry, production of electricity or as fuel for 
vehicles contributed in increasing NO2 concentrations.  
 

                   

Figure 2  Temporal (left) and spatial (right) trends of the annual average concentrations of nitrogen dioxide in Egypt. 

 

Lead. Monitoring results for lead (Pb) concentrations in Greater Cairo (1999- 2009) show a significant 
decrease (0.4-0.7 μg/m

3
) during 2007 and 2008 when compared to concentrations observed between 

2000 and 2002 (1.7 μg/m
3
; Figure 3). This reduction in Pb was a result of the exerted efforts of the 

MSEA to implement a National Programme aimed at reducing Pb pollution loads in Shoubra El-
Khaimah, an extensive industrial area within the greater Cairo region. This programme began in 1998 
and ended in March 2008 and consisted of a project to transfer all the foundries and cleaning their 
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lead-contaminated sites in Shoubra al-Khaimah; the expansion in producing unleaded gasoline by the 
Ministry of Petroleum; and the gradual replacement of gasoline with compressed natural gas as fuel 
for public transport. These efforts had been accompanied with MSEA amendment of Law 4 /1994 with 
respect to the permissible limits of lead concentrations in air to become 0.5 μg/m

3
 in residential areas 

and 1.5 μg/m
3
 in industrial areas instead of the general limit of 1 μg/m

3
, in both industrial and 

residential areas. Bio-accumulator plants (Lolium multiflorum L.) were used to assess Pb and Cd 
levels in plants in great Cairo. Evidence presented show that both Pb and Cd levels decreased with 
distance from highways, traffic volume and the existence of green barriers (El-Gamal, 2000). 

 

 

Figure 3  Annual average lead concentration in air between 2000 and 2009. 
 

Lead concentrations collected on leaf surfaces were high near industrial sites and lower at urban and 
suburban locations (Abou –El Saadat et al., 2011). Efforts to measure the accumulation of Pb in soils 
showed that at El-Fayoum Governorate the concentration was below the maximum permissible limits 
and were highest in soil surface especially near the main roads (Abdel-gawad et al., 2007).  
 
Conclusions  

 Air pollutant emissions pose an increasing threat to agriculture in Egypt; 

 There is a great need to assess the current and future impact of air pollution and to develop air 
quality guidelines for agriculture in Egypt, related to the local cropping pattern and climate; 

 Air pollution monitoring has tended to focus on urban areas, and there is a requirement for more 
rural monitoring on a regular basis. 
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Background 

Tropospheric ozone is the major air pollutant in major Greek cities (Athens, Thessaloniki, Patra, 
Volos, etc.) these days. There is also evidence that ambient ozone occurs at increased levels in many 
rural places across the country. This happens because Greece, along with other Mediterranean 
countries, is characterized by long periods of strong sunlight favouring photochemical pollution 
formation. Air pollution effects on plants have been studied in Greece since the mid seventies, mainly 
from point source air pollutants (airborne fluoride) (Holevas & Velissariou, 1986). In 1988, the first 
ozone Bel-W3 tobacco bio-monitoring campaign was carried out in Greece, at 23 sites in Attica, as 
well as a visible injury survey on Aleppo pine (Pinus halepensis Mill.) at 18 sites and short term ozone 
monitoring in two rural areas (Velissariou et al., 1989, 1990, 1992, Velissariou, 1993). In addition, an 
ozone exposure study was conducted on main Greek crops in fumigation chambers at Newcastle 
University (U.K.) from 1988 to 1990 (Velissariou, 1993, Velissariou & Davison, 1996). In recent years, 
tropospheric ozone impacts have been studied in major Greek cities (Saitanis et al., 2004; Riga-
Karandinos & Saitanis. 2005; Riga-Karandinos et al., 2006), as well as in many rural places across 
the country (Saitanis & Karandinos, 2001; Saitanis, 2003, 2008; Kalabokas & Reparis, 2004). 
 

Impacts of ozone on vegetation 

Severe damages on agricultural crops (yield losses and/or commercial value losses) due to ozone 
toxicity have been reported in Greece since 1993, on crops like wheat, maize, cotton, potato, 
watermelon, muskmelon, beans, lettuce (Figure 1), onion, fodder crops (Velissariou, 1996, 1999; 
Velissariou et al., 2000; Fumagali et al., 2001). These damages usually occur during short term acute 
photochemical episodes (Figure 1), common in Mediterranean climates, all over the year and 
particularly in areas favouring temperature inversions. Transboundary ozone is also being detected in 
Greece, probably affecting crop plants and natural flora in the long term. Moreover, ozone toxicity 
symptoms have been detected on the needles of Greek fir (Abies cephalonica loud.) and high ozone 
concentrations have been measured in two Greek fir forest ecosystems: Parnis mountain in Attica 
(Velissariou & Skrekis, 1999) and Taygetos mountain in Peloponnese southern Greece, (Velissariou 
& Salmas, 2008). Bioindicator campaigns with Bel-W3 tobacco and white clover (Figure 2) have also 
shown high ozone levels in other mountainous regions (Central Peloponnese and Pelion Mountain, 
Thessaly) (Saitanis et al., 2004, 2006), causing visible leaf injury. 

  

Figure 1  Left: A typical photochemical episode in the Greater Athens basin, over a four day period (9-13 

October 1998). Damages appeared universally in an extensive agricultural area near to the 

basin, just after the photochemical episode. Right: Leaf injury on glasshouse soilless lettuce 

cultivation caused commercial value losses of € 15000 overnight, during this episode. 

Ambient ozone fluctuation during a photochemical episode in

the Greater Athens basin, 9-13 October 1998
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Figure 2  Left: 3-month (May-July) AOT40 in Kalamata in 2003 in relation to the ozone critical level for 

crops. Right: growth of an ozone-sensitive variety (on the left) and ozone-resistant variety (on 
the right) of white clover in ambient air during the same period. 

 
Discussion, conclusions, recommendations 
Photochemicals and particularly tropospheric ozone are the dominating air pollution problem for 
vegetation in Greece in the last decades. High levels of tropospheric ozone due to the climatic 
conditions in Mediterranean countries, including Greece, such as strong and prolonged solar 
irradiation, favour ozone formation. Complex topography (valleys and basins) causing temperature 
inversions enhance the problem. Irrigated crops (vegetables, arable crops, etc.) are at high risk of 
ozone exposure due to high ozone uptake when water supply is non-limiting. Severe damages on 
agricultural crops (yield losses and/or commercial value losses) have been reported for the most 
important agricultural areas in the country (Thessaly, Peloponnese, Crete, etc.). Moreover, there is 
evidence that ozone may play important role to the decline of sensitive Greek fir (Abies cephalonica 
loud.) forest ecosystems. 
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Background 
The Republic of Macedonia was involved in the European moss survey under UNECE ICP Vegetation 
for the first time in 2002, when the atmospheric deposition of trace elements was studied in the whole 
country. The moss survey was also performed again in 2005 and 2010 using samples of terrestrial 
mosses Hypnum cupressiforme Hedw. and Homalothecium sericeum (Hedw.) B.S. & G. Moss 
samples were collected at 73 sites in 2002 and at 72 sites in 2005 and 2010 evenly distributed over 
the area of the country, using a dense net of 17x17 km

2
 in accordance with the sampling strategy of 

the European moss survey programme. The analyses of 42 elements were performed by using of 
neutron activation analysis (NAA) and atomic absorption spectrometry (AAS) as analytical techniques. 
The most important emission sources were determined (smelters and drainage systems near the 
towns of Veles, Tetovo, Kavadarci and Radoviš, as well as mines Sasa, Toranica and Zletovo in the 
east), and some uranium deposition patterns were identified from the activity of power plants (near 
Bitola and Kičevo) using lignite coal as fuel.  
 
Concentrations of heavy metals and nitrogen 
To determine the content of various elements in the mosses collected in 2010, AAS, ICP-AES and 
NAA were used. The content of 18 elements (Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Ni, P, Pb, 
Sr, V and Zn) was determined by using AAS and ICP-AES. The analyses were performed at the 
Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Skopje, Macedonia, while NAA 
was performed at the Joint Institute for Nuclear Research, Frank Laboratory of Neutron Physics, 
Department of Neutron Activation Analysis in Dubna, Russian Federation. The content of 42 elements 
was determined: (Na, Mg, Al, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Zr, 
Mo, Ag, In, Sb, I, Cs, Ba, La, Ce, Sm, Eu, Tb, Dy, Yb, Hf, Ta, W, Au, Th, and U). For the 
determination of the content of N, the Kjeldahl analytical method was applied. 
 
Results and discussion  
Analysing the trend of the median values calculated for the three moss surveys in Macedonia, it can 
be seen that in the last survey lower median values are observed for all elements, usually related to 
heavy metal pollution. The analysis with AAS as well as ICP-AES (2010 survey) is based on nitric 
acid digestion, and in non-destructive NAA determination (2002 and 2005 surveys) the total amount of 
the elements in question is analysed. The lower median values for Al, Ba, Ca, Cr, Cu, Fe, K, Mg, Mn, 
Na, Ni, Sr, V and Zn in 2010 can be explained by the difference of the analytical techniques and 
potentially not determining the total amount of elements using nitric acid digestion, due to their 
refractory minerals. Due to the intensive ferronickel production in Kavadarci region, the median value 
for nickel, in the 2005 survey is 2.5 fold higher than the data obtained for 2002. There are cases when 
the content of some anthropogenic elements are lower in the 2005 survey than those reported for 
2002 (As, Cr, Cu, Sb, Se). For example, the newly introduced protective measures on the slag dump 
from the closed ferrochromium smelter located near Tetovo, contributed a decrease in the content of 
Cr in the samples from 2005 compared to 2002.  

To explain the variation and to reveal associations of chemical elements all moss samples were 
examined by multivariate analysis. Five factors were identified and 80.3% of the variability of the 
investigated elements is explained. Factors were identified by visual inspection of similarities of 
spatial distribution of element patterns, the correlation coefficient, comparison of basic statistical 
parameters and the results of multivariate analyses. Factor 1 (As, Al, Ce, Cs, Dy, Fe, Hf, La, Li, Mg, 
Na, Nd, Yb, Sc, Sm, Ta, Tb, Th, Ti, U, V, W, Zr) represents chemical elements that are naturally 
distributed near to the region of Bitola, which is affected by the fly ash from the power plant using coal 
as a fuel and where the content of U and Th is higher than in the other regions. The content of these 
elements in mosses is significantly influenced by mineral particles released into the atmosphere by 
wind erosion of local sources or particles attached to the moss in the periods when the soil surface is 
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covered by water. Factor 2 (Ni, Cr, Co) represents a mixed (geogenic-anthropogenic) association of 
elements. These elements are affected primarily by natural factors such as lithological background, 
but are also affected by anthropogenic influence (ferronickel smelter plant near the town of 
Kavadarci). Factor 3 (Cd, Pb, Sb, Zn) represents the second anthropogenic geochemical association 
of elements due to the activities of three Pb-Zn mines in the eastern part of the country and due to the 
pollution from the former Pb-Zn smelter plant in the town of Veles. Factor 4 (Sr, Ba) represents 
another geogenic association of elements with the highest factor scores in the north-eastern part of 
the country. Factor 5 (I, Br) indicates marine influences and the highest values of these elements are 
present in the south-central and eastern part of the country. The spatial distribution of Factors scores 
is shown in Figure 1.  

 
 

   
 

  
 

Figure 1  Spatial distribution of Factor 1 (As, Al, Ce, Cs, Dy, Fe, Hf, La, Li, Mg, Na, Nd, Yb, Sc, Sm, Ta, 

Tb, Th, Ti, U, V, W, Zr), Factor 2 (Ni, Cr, Co), Factor 3 (Cd, Pb, Sb, Zn), Factor 4 (Sr, Ba) and 
Factor 5 (I, Br) scores for element concentrations in mosses. 

 
Nitrogen was also analyzed in the moss samples collected in 2005 and 2010 survey. The median 
value of nitrogen in moss samples was 1.21% (range: 0.70 - 1.54%) in 2005 and 1.06% (range: 0.68 - 
1.75%) in 2010.  

The results obtained from the investigation show that in comparison with similar studies made in 
neighbouring countries the pollution situation in the Republic of Macedonia is more favourable, but 
comparison with more pristine territories in other parts of Europe still shows that the country is 
exposed to considerable atmospheric metal pollution. Trends of lower median content in the mosses 
is noticeable in recent years for some elements, due to closing of some of the smelters, using non-
leaded fuels and some protective measures taken for some of the dump slugs in the country.  
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Background 

The first systematic study on atmospheric pollution from heavy metals and other toxic elements based on 
moss analysis was undertaken as a Romanian–Russian–Norwegian collaboration, in order to assess the 
general state of heavy metal pollution in Romania in the period 1995–2001 (Lucaciu et al., 2004 and the 
citations herein). The results on moss samples collected in different regions of Romania in 1990, 1995 and 
2000 were unified and reported by Harmens et al. (2008); Romania did not submit data for the 2005/6 
European moss survey. 
 

Results and discussion 

Nationwide moss survey undertaken in 2010/2011 by four Romanian Universities from Targoviste, Galati, 
Iasi and Baia Mare comprised 330 sampling sites evenly distributed over 75% of the Romanian territory. A 
total of 34 elements (Na, Mg, Al, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu*, Zn, As, Br, Rb, Sr, Cd*, Sb, 
Ba, Cs, La, Ce, Sm, Tb, Hf, Ta, W, Pb*, Th, and U) were determined in the large-scale concentration 
range — from 10000 mg/kg for Al and K to 0.001 mg/kg for some rare earth elements — by two 
complementary methods: instrumental epithermal neutron activation analysis (INAA) at the IBR-2 reactor 
at the Joint Institute for Nuclear Research at Dubna, Russian Federation, and graphite furnace/flame 
atomic absorption spectrometry (GFAAS /FAAS)

*
 in the Multidisciplinary Research Institute for Science 

and Technologies from Valahia University of Targoviste, Romania. Principal component (factor) analysis 
was used to identify the most polluted areas and characterize different pollution sources. Four factors 
were revealed (Figure 1).  
 

 

 
 
Figure 1  Spatial distribution of factor scores based on element concentrations in mosses in Romania in 

2010. 

 

Factor 1 is a mixture of light and heavy crust components (Na, Al, Sc, Ti, V, Cr, Fe, Ni, Co, Ba, La, 
Ce, Sm, Tb, Hf, Ta, W, Th, U). Factor 2 is of anthropogenic origin: Zn (0.82), As (0.73), Sb (0.92), the 

mailto:ivpopes@yahoo.com
mailto:stihi@valahia.ro
mailto:aene@ugal.ro
mailto:sman@uaic.ro
mailto:Todoran_radu@yahoo.com
mailto:marina@nf.jinr.ru
mailto:culicov@nf.jinr.ru


64 
 

main contributors to this factor being mining and industrial sites from north-western parts of the 
country. Factor 3 is a mixture of "marine elements" Cl (0.79) and Br (0.62); Ca (0.78), K (0.57) and Sr 
(0.45) may originate from fertilizer components — Sr most probably originates from phosphate 
fertilizers in agricultural areas and Ca and K from saltpeter (nitre) ones. Factor 4 comprises Pb (0.63), 
Cd (0.66), Cu (0.64) which can originate from gasoline or copper mining industry. Although the 
concentrations of heavy metals in mosses collected in Romania are high compared to other European 
countries (Harmens et al., 2013), the temporal trends presented in Figure 2 based on the reported 
values (Harmens et al., 2008, 2013) for selected metals reveal a decrease for the majority of elements, 
with the exception of Pb, Cd and Cu. 
 

 

Figure 2   Temporal trends of metal concentrations in mosses in Romania since 1990. 

 

Conclusion 
From the presented results it can be concluded that atmospheric deposition of trace metals is a 
considerable problem in the northern and western parts of Romania. This study contributes to the 
national monitoring system of Romania for long range transported elements of air pollutants, and 
along with epidemiological data it may serve as a baseline for human health risk assessments. 
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Russian Federation 
 

Lead institute: Marina V. Frontasyeva, Joint Institute for Nuclear Research, Dubna, Russian Federation, 

marina@nf.jinr.ru 

Collaborating institutes: Anatoly M. Dunaev, Ivanovo State University of Chemistry and Technology,Ivanovo, 

amdunaev@ro.ru;  

Juliya Koroleva, Immanuel Kant Baltic Federal University, Kaliningrad, yu.koroleff@yandex.ru;  
Inna V. Vikhrova, Municipal Educational Centre, Tikhhvin, Leningradskaya Region; 
Nina A. Lebedeva, Liceum # 1, Volgorechensk, Kostromskaya Region. 

 

Background 

The sporadic contributions of the Russian Federation to the European moss survey started in the early 
nineties of the last century in North-West Russia, Sankt-Petersburg, Kaliningrad, Pskov, Novgorod, part of 
Vologda and part of Karelia (by Goltsova and Fedoretz; Goltsova et al., 1992; Kharin et al., 2001). In 2000, 
results from Central Russia, Tver, Yaroslavl and Tula Regions were reported (by Ermakova and 
Frontasyeva; Ermakova et al., 2004). The next moss survey in 2005 was represented by the South Urals, 
part of the Republic of Udmurtia (by Pankratova and Frontasyeva; Yu et al., 2009) and the region North-
East of Moscow Region (by Vergel and Frontasyeva; Vergel et al., 2009). In 2010/2011, moss sampling 
was carried out in Central Russia, in Ivanovo Region, and on a local scale around the towns of Tikhvin, 
Lenindradskaya Region, and Volgorechensk, Kostromskaya Region. Apart from maybe Vologda, all 
sampled areas are affected by industrial activity, such as ferrovanadium plant “Vanadium-Tula” in the city 
of Tula, ferrochromium smelter “Tikhvin Ferroalloy Plant” in the Tikhvin district known for its bauxite, 
limestone and dolomite deposits, and many others. A clustering of heavy and machine industries in the 
Republic of Udmurtia along with oil mining and processing industry severely affect the environment in this 
area.  
 

Results and discussion 

The moss survey in 2010/2011 was undertaken by the postgraduate students of Ivanovo State University 
of Chemistry and Technology and two teachers and their pupils of the secondary schools in Tikhvin and 
Volgorechensk districts in collaboration with the Joint Institute of Nuclear Research in Dubna, which 
provided neutron activation analysis (NAA) at the reactor IBR-2 of FLNP JINR. Ivanovo State University of 
Chemistry and Technology provided atomic absorption spectrometry (AAS) for the samples from their 
region. The results obtained by AAS from the last moss survey in 2010 in Kaliningrad by Koroleva and 
colleagues (Koroleva et al., 2012), though not included in the report of the 2010/2011 European moss 
survey, were presented at the 27

th
 ICP Vegetation Task Force meeting in Paris (Tables 1 and 2).  

 
Table 1   Median metal concentrations (mg/kg) in mosses in the Kaliningrad Region from 1994–2010. 

year Cu Zn Mn Fe Ni Pb Ag Cr Cd 

1994
 

5.26 37 - 530 1.85 8.05 - 1.58 0.29 

2000
 

5.03 29 256 192 4.11 13.5 0.13 0.14 0.12 

2005
 

9.59 36 139 220 3.55 4.63 0.04 0.99 0.21 

2010 2.84 - 245 168 1.21 1.91 0.03 1.41 0.05 

 
Table 2   Heavy metal concentrations in Pleurozium shreberi in the Kaliningrad Region in 2010 (mg/kg). 

 

Cu Ni Pb Cr Cd Ag Mn Fe 

mean 4.46 1.20 2.51 2.16 0.109 0.044 346 217 

min 1.68 0.36 0.39 0.69 0.006 0.007 73 113 

max 19.7 2.54 9.33 12.1 1.12 0.233 960 700 

 

The low values (relatively to Norwegian ones) are evidence for the absence of potential sources of heavy 
metal emissions in Kaliningrad. The highest concentrations were determined in the western part (Sambia 
peninsula, Baltic Sea coast), elevated levels were observed in the North, North-East and South-West 
parts, and the lowest ones were in the centre of the Region.  
 
A total of 34 elements (Na, Mg, Al, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu*, Zn, As, Br, Rb, Sr, Cd*, Sb, 
Ba, Cs, La, Ce, Sm, Tb, Hf, Ta, W, Pb*, Th, and U) were determined by NAA and AAS (marked with *) in 
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moss samples collected in Ivanovo region, Tikhvin and Vilgorechensk districts. Some results of moss 
samples collected from the Ivanovo Region are shown in Figures 1 and 2.  
 

 
 
Figure 1  Distribution map of the molybdenum concentration (mg/kg) in moss in Ivanovo Region in 2010. 

 
Industrial activity is not a characteristic feature for the Ivanovo Region, except for small industrial 
enterprises in the city of Ivanovo. Therefore, the main contribution in atmospheric deposition is due to 
transboundary air pollution. The most probable sources of emission of pollutants are situated in the 
neighbouring regions (Yaroslavl, Kostroma, Vladimir): oil-refinery, metal processing, thermal power 
plants, and chemical industry. The combined analysis of moss and associated soil allows establishing 
the main source of anthropogenic impact on the wildlife preserve “Klyazminskii”. These are 
metallurgical plants in Kovrov and Klyazminskii gorodok. Tula and Udmurtia are industrial centres and 
show the highest concentrations for most of the heavy metals (Figure 2). 

 
Figure 2 Comparison of the mean values of some trace element concentrations (mg/kg) in moss in Ivanovo, 

Yaroslavl, Tula Regions and the Republic of Udmurtia. Y-axis: logarithmic scale. 

 

An example of the deposition patterns of Fe and Cr, the main contaminants of the town of Tikhvin in 

Leningradskaya Region, is shown in Figure 3. 

Element 

Concentration 

moss (mg/kg) 
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Figure 3 Distribution maps for iron (left) and chromium (right), the main contaminants of the “Tikhvin 

Ferroalloy Plant” in the Tikhvin district. 

 

It was shown that the main source of contamination of the environment in the town of Volgorechensk of 
Kostromskaya Region is the thermal power plant allocated in the suburbs of the town. Multivariate 
statistical analysis (PCA) was applied to the analytical results obtained for all samples areas to reveal and 
characterize the pollution sources. 
 

Conclusions 

It follows from the results obtained in the moss survey 2010/2011 in the sampled areas under different 

anthropogenic loadings of pollutants that contamination with heavy metals and other toxic elements is 

rather local but it may lead to the environmental stress. Attempts were made to use the results in 

environmental and human health risk assessments. 
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Serbia 
 

Lead institute: Marko Sabovljević; Faculty of Biology,University of Belgrade,Serbia. marko@bio.bg.ac.rs 
Collaborating institutes: 

Mitja Skudnik; Slovenian Forestry Institute, Ljubljana, Slovenia. mitja.skudnik@gozdis.si 
Zvonka Jeran;Institute Jožef Stefan, Ljubljana, Slovenia. zvonka.jeran@ijs.si 
Franc Batič; Biotechnical Faculty, University of Ljubljana, Slovenia. franc.batic@bf.uni-lj.si 

 
Background 
Serbia was involved in the European moss survey for the first time in 2005, when the atmospheric 
deposition of trace elements was studied mainly in the northern part of the country. In 2012, the 
second moss survey was performed in Serbia (18 different trace elements, nitrogen and sulphur), but 
for the first time on the national scale (excl. Kosovo). Mosses were sampled in a one-month period 
(mid May - mid June) for 42 locations that were regularly distributed throughout the country inside the 
systematic sampling grid UTM 50 km x 50 km. At each of the plots 5 subsamples of the moss 
Hypnum cupressiforme Hedw. were collected. Field sampling was done according to the guidelines of 
the UNECE ICP Vegetation programme. With the aim to achieve rather representative values of 
deposit in mosses per plot, one composite sample was pooled from five subsamples at each location. 
Before analysis, mosses were dried at room temperature and cleaned from obvious contamination 
particles (soil particles, litter etc.). Only green and yellow-green parts of the mosses were taken for 
further analysis. Moss materials was lyophilized for 24 hours and homogenized in a ball mill. For each 
of the moss sample, CNS (LECO-CNS 2000) and trace element content (ICP-MS) was determined. 
The most important pollution emission sources within the county are industry, smelters, mining and 
traffic. 
 
Results 
Element concentrations in mosses are shown in Tables 1 and 2. Results indicate higher contents of 
arsenic and chromium in moss tissues in Serbia. In the eastern part, the region of the Bor smelter is 
especially loaded with cadmium and copper. Nickel is elevated in the western part of the country, 
probably due to industry. The mean values of trace elements in the moss tissues in Serbia are 
somewhat higher than those reported for some western European countries, but more or less in 
accordance with neighbouring areas. Nitrogen deposition is especially high in the areas around bigger 
cities (Belgrade, Niš), along the Sava river and in the northern part of the country. Sulphur deposition 
is high in northern Serbia and areas around bigger cities, especially Belgrade and Niš. 
 
Table 1   Descriptive statistics of heavy metal content in mosses in Serbia in 2012 (N=42). 

[µg/g] As Cd Cr Cu Fe Ni Pb Sb V Zn 

Min 0.22 0.10 1.31 3.99 481.99 2.16 2.56 0.05 1.43 18.42 

Max 6.50 0.99 23.92 78.70 9817.46 37.58 42.26 1.18 20.58 87.00 

mean 1.67 0.27 6.26 11.92 2351.55 6.93 10.54 0.19 6.10 41.58 

median 1.28 0.22 5.24 9.31 2004.39 4.65 7.76 0.14 5.42 34.51 
 
Table 2  Descriptive statistics of N and S contents in mosses in Serbia in 2012 (N=42). 

[mg/g] N S 

min 9.04 0.84 

max 28.73 2.63 

mean 16.65 1.45 

median 14.25 1.34 
 

 

The spatial patterns of the lead (Pb) and nitrogen (N) content in mosses in Serbia in 2012 is shown in 
Figure 1. 
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Figure 1 Spatial patterns of Pb (left) and N (right) content in the moss Hypnum cupressiforme in Serbia 

in 2012 per 50 km x 50 km grid. 

 

Discussion, conclusions, recommendations 
The spatial variability of trace elements, nitrogen and sulphur, accumulated in mosses correlates well 
with the spatial variability in the level of the industrialization, traffic intensity and other anthropogenic 
activities. Because the analysis was done for the first time on the national scale, we cannot report on 
temporal trends. The abundance of the moss Hypnum cupressiforme is not equal in the whole 
territory of Serbia. In some areas (especially in northern parts of the country) it was difficult to collect 
five sub-samples at suitable sites. The monitoring with some other moss species should be regarded 
as an option. Microhabitat characteristics could be the reason for slightly differences in deposit 
values, due to the differences to precipitate exposures and further studies are needed. Individual and 
regional efforts, so far, do not allow for extensive analyses, such as long-term spatial deposition 
changes, spatial pattern changes or temporal national or transboundary patterns. Both research 
and/or screening as well as permanent monitoring are needed. National monitoring systems of 
atmospheric deposition including moss survey should be established long term as a National air 
quality control programme. 

The authorities should establish a national network for atmospheric pollution biomonitoring, as well as 
national permanent sampling plots. Moss monitoring with at least the current sampling density, 
expanded to include more atmospheric pollutants and new technologies should be established. The 
nationwide moss survey should be conducted frequently, providing a detailed record of spatial 
patterns and temporal trends of atmospheric deposition over Serbia. This is an important and valuable 
supplement to the national monitoring of trace metals in precipitation, which is limited to a small 
number of sites. 
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Slovenia 
 

Lead institutes: Franc Batič, Boris Turk, University of Ljubljana, Biotechnical Faculty, Agronomy Department., 

Jamnikarjeva 101, 1000 Ljubljana, Slovenia; franc.batic@bf.uni-lj.si, boris.turk@bf.uni-lj.si 
(ozone research). 
Zvonka Jeran, Darja Mazej, Jožef Stefan Institute, Department of Environmental Sciences, 
Ljubljana, Slovenia; zvonka.jeran@ijs.si, darja.mazej@ijs.si (moss survey). 

Collaborating institutes: Nataša Kopušar Institute for Ecological Research Velenje, Koroška cesta 58, 3320 

Velenje; natasa.kopusar@erico.si (ozone research). 
Mitja Skudnik, Daniel Žlindra, Slovenian Forestry Institute, Ljubljana, Slovenia; 

mitja.skudnik@gozdis.si, Daniel.zlindra@gozdis.si (moss survey). 
 

Background 

Slovenia has been involved in the European moss survey since 1995 and in ozone research since 
1996. Mosses have been collected every five years between the middle of June and the end of July 
on a regular grid. The following elements were determined: As, Cd, Cr, Co, Cu, Fe, Hg, Mo, Ni, Pb, 
Sb, Se, Sr, V, Ti and Zn. Since 2001, nitrogen and sulphur were included, and in 2010 the first results 
for polycyclic aromatic hydrocarbons (PAHs) in mosses were obtained from a selected number of 
plots. Regarding ozone, the main objective is to monitor effects of tropospheric ozone on crops and 
semi-natural vegetation in agreement with the Slovenian National Environmental Program. Three 
permanent experimental sites were established by the group in Ljubljana representing air pollution 
and land use types in Slovenia: Ljubljana (urban site with moderate level of ozone), Iskrba (rural site, 
with elevated level of ozone) and Rakican (EMEP station, rural site important for crop production, 
affected by high traffic) and several sites around the thermal power plant Šoštanj established by the 
group in Velenje. In the years 1996-2007, white clover (Trifolium repens ‘Regal’) was used as 
indicator species, then brown knapweed (Centaurea jacea) and bush bean (Phaseolus vulgaris) were 
introduced as ozone indicators in 2008-2010 following the ICP Vegetation protocols. 

The emissions of ozone precursors in Slovenia are showing 41% decline from 1990 to 2011. NOx 
emissions declined 25%, CO emissions 56%, non-methane VOCs 51% and methane emissions 7%. 
The main reason for the decline is introduction of new emission standards for motor vehicles. 
Additional reasons for the decline are new legislation on storing and transport of fuels, technological 
improvements in thermal power plants, installation of exhaust cleaning devices and improvement of 
incineration processes in industry. Tropospheric ozone concentration shows distinct fluctuation during 
the year, and among the years, depending on sunlight. They are the highest in the western parts of 
Slovenia, due to the transboundary transport of precursors from northern Italy. Measured ozone 
concentrations are mostly above target values, all over the country. No significant trend can be 
observed in long-term measurements of ozone concentrations. 
 

Results 

Ozone. Tropospheric ozone concentrations, expressed as AOT40 values, are showing fluctuation 
with time, mostly depending on weather conditions and thus not following the general ozone 
precursors decline, discussed above (Figure 1). Due to transboundary inflow of precursors and 
higher elevation, significantly higher concentration are observed at the Iskrba site. 

 
Figure 1  AOT40 calculated at three sites in Slovenia between 1998 and 2007. 
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Observed ozone-induced leaf injuries of white clover (Figure 2) showed some correlation with 
measured AOT40 values of ozone, but are confounded by other environmental influences (drought, 
temperature, pests) and the subjective nature of assessment (different assessors with time and 
location). White clover proved not to be a reliable indicator of ozone impacts on plants, at least at 
such small scale, bush bean seems to be slightly more reliable (data not shown). 

 

Figure 2  Ozone-induced leaf injury on white clover for an ozone sensitive and resistant clone. 

 

 

Figure 3  Concentrations of cadmium and nitrogen in H. cupressiforme collected at 102 locations in 

Slovenia in 2010 (left) and concentrations of cadmium and nitrogen at 32 plots which were the 
same in the last three surveys, i.e. 2001, 2006 and 2010 (right). 

 

Heavy metals and nitrogen. The overall spatial pattern (Figure 3) of levels of anthropogenically 
derived elements especially Pb, Cd, Mo, Zn, Sb and N in Slovenia can be explained on the one hand 
by the population density and the locations of the main pollution sources (steel factories at Jesenice 
and Ravne, coal burning thermal power plants at Šoštanj and Trbovlje, a former Pb-smelter) and on 
the other hand by transboundary transport of air pollutants from neighbouring countries, mainly as a 
consequence of meteorological conditions (wind, precipitation). The northern and north-western parts 
of Slovenia are the regions receiving the highest yearly amounts of precipitation, while the 
precipitation pattern gradually decreases toward the east. The heavy transit traffic that crosses 
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Slovenia along the diagonal from the port of Koper or Gorica in the south-west to the Hungarian or 
Austrian border in the north-east might be an additional source of traffic-derived metals such as Sb, 
as well as for N. Higher values of N in moss in the north-eastern region can additionally point to the 
agricultural activity that dominates this area. 

Similar to the majority of European countries, a decrease of heavy metal concentrations in mosses 
was observed in Slovenia since 1995 (Figure 4), which was most probably due to economic factors 
because some of the heavy polluters have shut down or modernized their technology to reduce 
emissions. Another reason for the relatively big decline between 2005 and 2010 could be a change in 
sampling strategy. Influence of canopy drip was avoided in 2010. Comparative analyses had shown 
that significantly higher concentrations were found in mosses under the canopy in comparison to 
those at least 1 m away; on average about 20% for Cu, As and Hg, to up to 30- 50% for Cu, Hg, Ni, V, 
Pb and N 3 m away from the nearest tree. 
 

 

Figure 4  Median Cd and N concentrations in H. cupressiforme in 2001 at 82 plots, 2006 at 57 plots and 

2010 at 102 plots (blue line) and at the same 32 plots (green line) in all three surveys. 

 

Discussion, conclusions, recommendations 

Biomonitoring of tropospheric ozone effects in Slovenia, carried out within the activity of ICP-

Vegetation, has proven that there is a high potential for ozone formation in the country but the 

observed damage on bioindicator plants used was much smaller than expected, based on AOT 

values. The reason for this discrepancy might be over-sensibility of used indicator plants to drought 

stress, especially white clover, what was proven by some diurnal measurements of photosynthesis 

and transpiration at the site in Ljubljana. We got similar results with bush bean when the plants were 

covered with a hail protection net. The net reduced sunlight intensity and typical ozone damages were 

observed in both biotypes of plants. High potential risk of ozone damage on plants was also proven 

by ozone biomonitoring with tobacco (Nicotiana tabacum 'Bel-W3') and the high frequency of ozone 

damage on forest vegetation and ornamental plants. Biomonitoring of ozone impacts on vegetation as 

developed within activities of Working Group on Effects of the LRTAP Convention should be 

integrated in the future in European environmental policy and common agro-environmental 

programmes to ensure continuity and enhance chances of funding. 

Although there were slight modifications in moss sampling over the 15 year period, the spatial pattern 
of elements and their temporal trends reflect the overall pollution in the country, as well as the natural 
background. The application of factor analysis to the moss data resulted in similar elemental 
associations in a particular factor and its spatial distribution in all three surveys, including a lichen 
survey (Jeran et al., 2007). Moss monitoring should be used in the future as a supplement to the 
official national air monitoring programmes performed by the Slovenian Environment Agency, as it 
could provide additional data on air pollution (elements, nitrogen, organic pollutants and 
radionuclides) at a higher number of sites than covered by their current programmes.  
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Figure 2: Median Cd and N concentrations in H. cupressiforme in 2001 at 82 plots, 2006 at 57 plots and 

2010 at 102 plots and at the same 32 plots in all three surveys. 
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