

Swedish Clean Air and Climate Research Program Frisk luft och Klimat

Swedish Clean Air and Climate Research Program

WP 4. Climate and carbon cycle impacts of short lived climate forcers.

Forest ozone exposure and effects on carbon sequestration

2014-09-15

Per Erik Karlsson, Håkan Pleijel*, Hans Linderholm**

IVL Swedish Environmental Research Institute

- * Dept Biol & Env Sciences, University of Gothenburg
- ** Dept of Earth Sciences, University of Gothenburg

www.ivl.se

Background.

- The carbon stocks in Swedish forests increase 30-40 M t CO_2e/yr and the main sink is the living biomass
- Depends on the gap between growth and fellings
- A small decline in the growth rates may substantially reduce forest carbon sequestration

Aims and approach

Aims

- To further quantify the ozone impacts on the growth of Swedish forests
- To quantify the impacts of other air pollution and climate elements on the growth of Swedish forests

Approach

- Dendrochronology investigations of >20 years of historic forest growth at approximately 25 different sites with Norway spruce, Scots pine and European beech across Sweden
- Explanatory variables include:

Yearly ozone exposure; Yearly temp sum/VPD; precipitation sum; radiation; Yearly drought days (modelling soil moisture); Yearly nitrogen deposition; Yearly basecation deposition; Soil, and stand characteristics etc. etc.

Research plots

- Plots within the Swedish Throughfall monitoring network (SWETHRO) with estimates for air pollution concentrations, deposition and soil water chemistry
- Some of the plots are co-located with forest observation plots run by the Swedish Forest Agency, with regular monitoring of stem DBH; needle nutrients; soil structure and chemistry; crown thinning
- Some plots are part of a research project with modelling of growth and soil water chemistry with the FORSAFE model (Salim Belyazid & Cecilia Akselsson, Lund University)

Research plots

 Plots, 17 with Norway spruce, 4 with Scots pine, 4 with European beech)

[ppbv hours]

5000

2000

10000 15000 20000 30000

40000 60000

The methodology of dendrochronology

Are there methodology problems in interpreting tree-rings vs. yearly growth rates ?

Possibilities

 At Asa research station DBH has been monitored weekly since 1993 and ongoing

 Tree-ring analysis of the same trees would give an insight into the relations between tree-rings and manual growth assessments

The time-step

7

Yearly

Advantages

Can use the between-year variation in both the dependent- and explanatory variables

Dis-advantages

 there might be complications with "memory effects" between years, which however might be handled with the statistical models

The dependent variable

The yearly, relative stem basal area increment (%/ yr)

Advantages

– A rate parameter, strongly coupled to forestry assessments

- **Dis-advantages**
 - biased by stem shape changes, c.f. Kranzberg

Karlsson, unpublished

Pretzsch et al., 2010.

The explanatory variables – ozone exposure

9

AOT40

- Advantages
 - relatively easy to estimate, compared to ozone flux
 - has been demonstrated useful for Swedish conditions, both in experiments and epidemiology
- Dis-advantages
 - may ignore the dose-modifying impacts of VPD and soil moisture

The role of soil moisture for the ozone exposure

A severe drought treatment during 3 out of 4 ozone exposure seasons did not result in a better correlation between reductions in RGR and ozone exposure based on ozone flux as compared to AOT40.

Karlsson et al. Environmental Pollution 128 (2004) 405–417 415

The explanatory variables – ozone exposure

AOT40, apr-sep

20000

15000

ppb timmar 2000 2000

How to estimate plot AOT40 ?

- The national rural ozone monitoring
 - few sites, most available > 20 years
- The southern Swedish Ozone Monitoring Network
 - more sites, only few years
 - based on monthly passive sampling in combination with hourly air temperature measurements
- The MATCH model
 - as yet not available for 20 years

2014

The explanatory variables – ozone exposure

How to estimate plot AOT40 ?

 The monthly ozone passive sampling/ air temperature methodology at 10 "critical" plots

The explanatory variables – soil moisture

How to estimate historic soil moisture during >20 years?

- Buecker et al, 2012?
- Monitoring soil moisture at 10 and 50 cm depth with gypsum blocks at three sites as a transect across southern Sweden

Statistical methods

XXX

Advantages

- xxx

Dis-advantages

– ууу