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Causality and confounding 
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Causality criteria by Austin Bradford Hill (1965) 
http://www.edwardtufte.com/tufte/hill      http://en.wikipedia.org/wiki/Austin_Bradford_Hill 

Clarification of  terminology 

Exposure:      Any factor / variable that might causally influence our outcome variable 
                       of interest (e.g., ozon concentration, temperature, soil composition, etc.) 

Disease indicator:      a) Manifest tree disease or  
                                   b) Symptom indicating  some problems 
                                   c) Quantitative parameter indicating some problems  
                                       (e.g., decreased growth) 

Association:              Association between disease indicator of interest and  
                                  exposure(s) of interest observed in a given study. 
                                  Notice that associations can be positive (more disease at higher 
                                  exposures) or negative (less disease at higher exposures) 

These criteria are generally neither necessary nor sufficient but provide guidance. 
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1. Strength:      strength of association adds credibility to a causal relationship 

2. Consistency:     association repeatedly observed in different studies / settings 
                                 rules out chance as explanation and makes it unlikely  that a  
                                 common systematic error is at work. 

3. Specificity:     The exposure in question is asscoiated with a specific disease type 
                                 but not with other disease types. No other factors (strongly)  
                                 increasing the risk of the respective disease are known. 

4. Temporality:     The exposure must have been present (for enough time)  
                                 before the disease occurred / the disease indicator increased.                    

5. Biological gradient:    Presence of a dose-response relation:  
                                        Increase / decrease of  risk of disease / disease indicator  
                                        with increasing level of exposure.          

Bradford-Hill’s 9 criteria 
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7. coherence:                 Observed association should not conflict with existing evidence 
                                       on the respective disease, in particular with established associ- 
                                       ations between the disease and other factors.  

8. experiment:               If association can be demonstrated under experimental condi- 
                                      tions, this is the strongest evidence for its causality 

9. Analogy:                    Were similar associations found for similar disease indicators  
                                       and/or exposures in the past? 

6. Biological plausibility:   The association makes sense in the light of current biological  
                                             knowledge.                                     



Confounding 

Y (plant growth) X (O3) 

U (Temp) 

Bidirectional arrows indicate association, one-directional 
arrows causal influence.  



Arithmetic of confounding 

Y X 

U 

S1 S2 

S3 

S1 S2 S3 
+ + + 
+ - - 
- + - 
- - + 



Example: O3, Temp and plant growth 

Plant growth O3 

Temp 

+ + 

+ 
S1 S2 S3 

+ + + 
+ - - 
- + - 
- - + 

- 

Negativity of association between plant growth and O3 is underestimated if  
effects of temperature are not controlled for in the model. 
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How can confounding be avoided  
or at least minimized? 



1. Experimental blocking of confounder  

Y X 

U 

randomisiation, 
experimental control 



2. Stratifikation by confounder variable 

Example: Assess relation between plant growth and ozone  
separately in areas with higher and lower temperature levels. 



3. Regression models 

Y   =   b0   +   b1 ⋅ X   +   b2 ⋅ U   +   «random» influence* 

Influence of X on Y Influence of U on Y 

or more generally: 

Y   =   f(X, U, random influence) 

* includes influences from unmeasured factors 



Residual confounding 

Typically occurs in stratified analyses, because the confounder  
may still show some variation within strata. 

May also occur in regression models if the effect(s) of the  
confounder are not well modelled or if the confounder is  
not measured precisely enough. 



What must be considered when modeling the effect(s)  
of a confounder? 

1. Potential non-linearities in the effect. 
      If effects are modeled as linear despite their non-linearity, this may lead to RC*.  

2.  Interactions of the confounder with other factors.  
     Their ignoring may also lead to RC*. 

3. If the metric chosen to measure the confounder is not appropriate, this may  
lead to RC*. 

* whenever the variable of interest can step in to mitigate the respective  
   modeling deficit. 

4. If the lag structure of effects is not properly reflected in the model, this may  
lead to RC*. 



Consequences of model mis-specification 

For a prediction model, the consequences may be minor if the model is always 
applied under the conditions having been present when the model was derived. 
 
But these underlying conditions are likely to be different in other geographic  
regions and they also tend to change over time in the same region.  
 
Therefore prediction models should be extrapolated to other regions with caution  
and they should be regulary updated even for their «native» use.  
 
Effect estimates tend to be biased in the presence of residual confounding,  
i.e., they tend to be systematically wrong. 



Cave:  intermediate endpoints 
Intermediate endpoints V are parameters or events on the pathway  
from the exposure of interest X to the endpoint of interest Y. 
They are often wrongly treated as confounders of X. Their inclusion 
in the model absorbs effects from X on Y which are mediated 
by V. As a consequence, only the effects of X on Y which are not 
mediated by V are observed. 

Example: 

X=drought 

Y=plant growth V = 

 

 bark beetle 
infestation 



How to deal with intermediate endpoints? 

 
may  
 
     a) omit them  
or 
     b) regress V on X and replace V by the residuals of this regression. 
or 
     c) use structural equation models to disentangle the effects of X on 
    Y mediated by V and those not going through V.   
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Random effects models 



Random effects models 

Y   =   b0  +  b1⋅X1 + … +   bp⋅Xp   +   Random 

In random effects models, Random  is considered to be the sum of  
random influences from more than one source, e.g., 
 
Random   =   Rregion  +  Rplot  +   Rtree  +   Ryear  + Rmeasurement 

In classical linear models we assume that different observational  
units share no common random influences, i.e., that  
 
 R   = Rmeasurement 



Generally, repeated measurements from the same tree or  
measurments from trees in the same plot  
or from plots in the same region  
share common random influences 

These random influences are nested: 
individual measurements are nested in trees 
trees are nested in plots 
plots are nested in regions 

On the other hand, random effects of  the factor year capture specific  
influences in the different years unexplained by the predictor variables  
X1, X2, …, Xp of the model. They are frequently assumed to be iden- 
tical across all regions.  



Region, plot, tree and year are referred to as cluster levels and the 
members of a cluster level are referred to as clusters.  
 
Members of the cluster level «region» are the different regions 
      ‘’        of the cluster level «plot» are the different plots in  
                 the respective region  
      ‘’         of the cluster level «tree» are the different trees in  
                 the respective plot 



Mixed linear models and generalized linear mixed models can  
deal with such random effects.  

They will not estimate them as they estimate the parameters 
b1, b2, …., bp of the predictor variables X1, X2,…,Xp, 
instead they estimate the variances of the random effects. 

And they assume that each random effect is an outcome of  
a normal distribution with mean 0. 

Rmeasurement <-  N(0, σe
2) 

Rtree <-  N(0, σtree
2) 

Rplot <-  N(0, σplot
2) 

Rregion <-  N(0, σregion
2) 

Ryear <-  N(0, σyear
2) 



What happens if random effects are ignored? 

Then the parameter estimates, i.e., the estimates of the 
coefficients b1, b2, …., bp of the predictor variables 
 
X1, X2, …., Xp may be biased  
 
(but this needs not be the case) 

However, the standard errors, p-values and confidence intervals 
will inevitably be biased.  
Statistical significance of factors varying (mainly) between clusters 
is overestimated, while statistical significance of factors varying  
(mainly) within clusters is underestimated.   



Why not replace random effects by fixed effects? 

This is always an option, especially if the number of clusters 
is limited (e.g., in case of  a limited number of regions). 

But this generally leads to a loss of statistical power because 
contrasts in a predictor variable X (e.g., O3) between the clusters  
are no longer available for estimating the effect of X.  

Moreover, there may be cluster-level variables (variables 
that do not vary within but only between clusters, e.g., altitude of  
the plot) that one would like to include among the predictors.  
This is impossible if the respective clusters are represented in the  
model by a fixed factor.   
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Measures of model fit 
  

and  
 

model selection criteria 



Measures of model fit in classical regression 

adjusted R2 

Proportion of the variance of Y (outcome) which the  
model explains in the underlying sample 

R2 

Estimate of the proportion of the variance of Y  
which the model explains at the population level 

* n = sample size, p = number of parameters other than cons 

The adjusted R2 is to be preferred because R2 increases with each 
additional variable even if this variable is uninformative for Y. 

=  R2    –  (1 – R2) ⋅ p / (n – 1 –p )  *  

For the adjusted R2, larger is better. 



Measures of model fit in generalized linear models  

AIC Akaike information criterion 
 
- 2*ln(likelihood)           +         2 ⋅ number of parameters* 
                                                      

* other than cons 

measure of misfit in sample penalty for model complexity 
(risk of overfit) 

BIC Bayes information criterion 
 
- 2*ln(likelihood)           +         ln(n) ⋅ number of parameters* 
                                                      

measure of misfit in sample penalty for model complexity 

For both measures smaller is better 



AIC and BIC in classical linear models  

AIC Akaike information criterion 
 
n*ln(variance of residuals)  +  2 ⋅ number of parameters* 
                                                      

* other than cons 

measure of misfit in sample penalty for model complexity 
(risk of overfit) 

BIC Bayes information criterion 
 
n*ln(variance of residuals)  +  ln(n) ⋅ number of parameters* 
                                                      

measure of misfit in sample penalty for model complexity 

For both measures smaller is better 
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To get an idea of how well a model will be able to predict new  
observations, cross-validation may be used. 

Leave-one-out cross-validation works as follows: 
a) The first observation of the derivation sample of the model is omitted. 
b) The model is refitted without this observation, providing model M(-1) 
c) The difference between y of the omitted observation and its 
     prediction from M(-1) is computed and stored. 
d) The procedure a) – c) is repeated with the rest of the observations. 
e) The variance of all obtained differences is computed (cross-validation 
     error variance)  

Model cross-validation and AIC 

Among different competing models, the one with the smallest error  
variance is selected. However, AIC may be used instead, because it is  
very closely related to the cross-validation error variance.  
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Adjusted R2 and BIC are good criteria for comparing classical linear pre- 
diction models, if the aim is to only include truly informative variables.  
Each predictor variable should have a clearly visible influence on adj R2. 

AIC is less strict than BIC and may be preferred in explanatory models 
where the aim is to include both truly informative and potentially  
informative variables.  

When to use which criterion? 

In any case, model comparison based on BIC or AIC is superior to 
model comparison based on p-values, since no significance level  
can be justifed by theoretical considerations. For instance α = 0.05 
is pure convention without any theoretical underpinning. 
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Modeling of non-linear  
functional relationships 



Modeling of non-linear functional relations 

1. Use of  polynomial functions 

model statement:    y ~  x1c + I(x1c^2) + I(x1c^3) + x2c + ….  

Recommended:  prior centering of predictor variables (e.g., by subtracting the mean) 

x1c  <-  x1 – mean(x1) 

or  

model statement:    y ~  poly(x1c,3) + x2c + ….  



Quadratic functions can model functional relationships of the form 

Cubic functions can model functional relationships of the form 



2. Use of fractional polynomials 

Use of functions  x3x 2x x x
1

x
1

2
1

x)ln(x

concave,   rising 
x )ln(x

3x2x

convex,  rising convex,  falling 

x
1

x
1

2
1

x



R-syntax 

R-package:  mfp 

fpmod <- mfp( y ~  fp(x1) + fp(x2) + x3 + …. , data=file) 

Effects of variables wrapped by fp() are modelled as fractional polynomials 

print(fpmod)  generates model output 



To plot the functional relationship between y and x1 

pred<-predict(model,newdata=filec,level=0) (Evaluate the prediction 
equation at the values of 
file.) 

filec <- file 

filec$x2 < - mean(x2) 
(Generate new data frame where all predictor 
variables other than the one to be plotted are set 
to their mean value or a certain fixed value) 

filec$x3 < - # 

plot(file$x1,pred) (Plot the curve between pred and x1) 



3. Use of splines 

knots 

            knots joined by cubic curve segments             

Some splines are built by joining different curve segments in a smooth way: 

X 

Y Cubic spline 



Natural splines 

Natural cubic splines are cubic splines, as in the previous picture,  
but with linear end pieces. 
 
Compared to cubic splines they are less prone to produce  
artefacts at the ends of the domain of X.  
 
Linear splines are automatically natural, because they are  
composed of linear pieces over consecutive intervals. 
 
Quadratic splines are composed of quadratic curve segments  
and it they are natural, they also have linear end pieces.  



B-splines  

Cubic B-spline basis functions 
defined over the range of the 
drought variable  

are superpositions of basis functions each of which is zero outside a fixed interval  

B-splines are very flexible and collinearity problems are not an issue with them.  



Natural splines and B-splines in R 
R-Package: splines Natural splines  (ns)  and B-splines 

model <- lme(y ~ ns(x1,df=#) + x2 + x3, random = ~1|site,  data=file) 

To plot the spline function: 

pred<-predict(model,newdata=filec,level=0) 

plot(file$x1,pred) 

The «optimal» number of degrees of freedom can be determined using the  
AIC or the BIC-criterion 

Can proceed as with the fractional polynomials, but predict command 
must be extended to tell R what to do with the random effects.  

(Evaluate the prediction 
equation at the values of 
file.) 

AIC(model) or BIC(model) 
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